<packhb

GitHub

Foundations —

Certification
Guide

Essential skills, real-world labs,
and exam strategies for GitHub
beginners

o

o

®

Ayodeji Ayodele L ® O
<

O

Forewords by:
Irshad Burtally Ali Condah

Senior Director, Senior Director,
Customer Success Architecture, GitHub Certification & Enablement, GitHub

GitHub Foundations
Certification Guide

Essential skills, real-world labs, and exam strategies for GitHub beginners

Ayodeji Ayodele

GitHub Foundations Certification Guide
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, exceptin the case of brief

quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information pre-
sented. However, the information contained in this book is sold without warranty, either express or implied.
Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages

caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Kunal Chaudhary
Relationship Lead: Rithika Shetty
Project Manager: Ashwin Dinesh Kharwa
Content Engineer: Sushma Reddy
Technical Editor: Rohit Singh

Copy Editor: Safis Editing

Indexer: Rekha Nair

Proofreader: Sushma Reddy

Production Designer: Ajay Patule

Growth Lead: Vinishka Kalra
First published: August 2025
Production reference: 1220825

Published by Packt Publishing Ltd.
Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.
ISBN 978-1-83620-605-7

www . packtpub.com

www.packtpub.com

To my family, Adeola, Luke, and Jude. You are my rock!

— Ayodeji Ayodele

Forewords

In today’s technology landscape, where innovation cycles are accelerating and software is at the
heart of every industry, the ability to collaborate effectively and deliver secure, scalable code has
never been more essential. Platforms such as GitHub do more than merely enabling this evolu-
tion; they lead it. As the world’s leading platform for developer collaboration, GitHub has become

synonymous with modern software development, DevOps maturity, and open source excellence.

Itis within this context that Ayodeji’s work on the GitHub Foundations Certification emerges as
both timely and valuable. This book is not just a study guide; it is a gateway into the core prac-
tices that define today’s high-performing engineering teams. For developers, team leads, and IT
professionals at any stage of their career, the GitHub Foundations Certification, and by extension
this book, provides a structured pathway to mastering the core capabilities of GitHub. The chap-
ters are well structured, with hands-on labs, and build incrementally on the knowledge required

to learn the version control, collaboration, automation, and security capabilities of the platform.

What sets this work apart is Ayodeji’s unique ability to distill complex concepts into accessible
insights while grounding them in real-world relevance. His experience in the field, combined
with a deep understanding of developer workflows, gives this book an authority that extends
beyond exam preparation. You will gain the skills needed to pass the certification and also come
away with a deeper appreciation of how GitHub can transform the way individuals and teams

build software.

As someone who works closely with enterprise leaders and software practitioners alike, I have
seen firsthand how foundational knowledge of GitHub can unlock efficiencies across the entire
software life cycle. It fosters collaboration, enables faster innovation, and embeds security and

compliance by design. In short, it turns good teams into great ones.

Ayodeji’s contribution here will help nurture that transformation across countless careers and
organizations. Whether you’re a student just starting out, an educator shaping future engineers,
or a professional looking to formalize your skills, this book will serve as a reliable companion on
your journey. It mirrors the advice and enablement we provide to our developer communities

and enterprise customers.

I commend Ayodeji for this important work and encourage you, the reader, to approach it not
just as a manual for certification but as a step toward mastering the tools and practices that will

define the future of software.
Irshad Burtally
Senior Director, Customer Success Architecture,

GitHub

The GitHub Foundations Certification marks an important milestone not just for individuals look-
ing to validate their skills but for anyone seeking to build a deeper understanding of the tools that
power modern software development and collaboration. As GitHub becomes increasingly central
to how the world builds software, this certification offers a clear, accessible path for learners at

all levels to demonstrate foundational knowledge and confidence in using GitHub effectively.
This book was created to help you prepare for that journey.

Rooted in the real-world expertise of GitHub’s own Ayodeji Ayodele, who works within our Cus-
tomer Success team, this guide combines the same best practices we use to onboard our enter-
prise customers with curated learning pathways designed for public learners. You’'ll gain practi-
cal insight into workflows, terminology, collaboration strategies, and the core concepts behind
repositories, version control, and project automation—essentials for anyone using GitHub in

today’s workplace.

But we also recognize that technology is constantly evolving. That’s why this book doesn’t just
help you prepare for the certification—it also points you to where you can find the most up-to-

date information, ensuring you stay current well beyond the exam.

This book also complements the content and hands-on labs available through GitHub Learn and
aligns with training developed in collaboration with Microsoft Worldwide Learning and other
trusted third-party providers. Whether you prefer instructor-led training, on-demand videos, or
interactive labs, the GitHub Foundations Certification journey meets you where you are, making

learning accessible, engaging, and relevant.

We’re also at a unique momentin the evolution of learning itself. The rise of generative Al is trans-
forming how we write, build, and think. GitHub Copilotis just one example of how Al is enabling
both developers and non-developers to accelerate their work—and with it comes a growing need

for individuals to understand the foundational tools that support this new wave of innovation.

This bookis your guide to mastering the fundamentals, validating your skills, and joining a global
community of learners and builders. Whether you’re just getting started or looking to formalize
your knowledge, the GitHub Foundations Certification—and the journey you will take through
these pages—will help you take that next step with clarity and confidence.

Let’s get started!

Ali Condah
Senior Director, Certification & Enablement,

GitHub

Contributors

About the author

Ayodeji Ayodele, also known as “Ayo,” is a seasoned architect, software engineer, and DevOps
coach with over 20 years of experience across industries including finance, tech, FMCG, and the
public sector. Currently a senior customer success architect at GitHub, he helps enterprise clients
unlock the full potential of modern software delivery. Ayo is passionate about building innovative,
user-centric solutions and has worked with teams across Asia, Oceania, and Africa to champion
Agile and DevOps practices. When he’s not immersed in technology, Ayo enjoys football, music,

and exploring new places around the world.

I want to especially thank my loving wife and sons for their patience, and the people who are close to

me and have guided me all these years. To my great colleagues and amazing hubbers helping the world
build software, Merci!

About the reviewers

Massimo Bonanni, a Microsoft Technical Trainer, excels in tech and community leadership. A
six-time Microsoft MVP, Intel Black Belt, and Software Innovator, he drives Azure skill enhance-
ment. He has delivered over 200 conference sessions in a decade. Massimo has founded Italian

tech communities. He is also a dog lover, reader, and LEGO enthusiast.

My deep gratitude to the editorial team. To my wife, Floriana, and to my family: your unwavering support

is invaluable. Thanks to the vibrant tech community: your enthusiasm fuels my work.

Jerome Hardaway is a software engineer, instructor, and technical author with a background
in the United States Air Force. He is the founder and executive director of Vets Who Code, a non-
profit that helps military veterans transition into tech careers. With over a decade of experience,
Jerome has contributed to developer education at LinkedIn Learning, Frontend Masters, and
GitHub, and has been featured by major tech organizations. He has authored and reviewed several
publications focusing on developer tools, career growth, and open source. Jerome is passionate

about using technology to create economic empowerment and increase access to opportunity.

I'want to thank the Vets Who Code community for their inspiration, and my wife, Shatara, for her love
and patience. My deep gratitude to Natalia, whose thoughtful critiques and notes sharpen my thinking
and make all my work better. I'm also thankful for my family’s support, and to Ayumi for her constant

insight and empathy. I'm honored to have played a part in bringing this book to life.

Join us on Discord!

Read this book alongside other users, developers, experts, and the author himself.

Ask questions, provide solutions to other readers, chat with the authors via Ask Me Anything

sessions, and much more. Scan the QR or visit the link to join the community.

https://packt.link/deep-engineering

https://packt.link/deep-engineering

Table of Contents

Preface

XXXI

Sprint O: Preparing for the Certification

What is the GitHub Foundations certification? N
Target audience o 2
Exam structure e 3
Domain 1: Introduction to Git and GitHub e 3
Domain 2: Working with GitHub Repositories o 4
Domain 3: Collaboration Features o 5
Domain 4: Modern Development 6
Domain 5: Project Management e 7
Domain 6: Privacy, Security, and Administration e 8
Domain 7: Benefits of the GitHub Community e 8
Question types e 9
Time limit e 9
Preparation StrateZIes cccuccvcceereccsssssnereeeccssssssneeeeccssssnseesecsssssssssesecsssssssssssssssssssssasaee
Study resources ¢ 10
Hands-on practice ¢ 10
Mock exams e 10

EXam regiStration ..cccccceeeecceeeeeccissssenneereccssssnsseeesssssssssssessessssssnssessescssnes

..........

Exam-day test CENnter reqUIreMEeNtSsceeeeeseeessneessseessasesssseessacens
Identity requirements e 12

Exam accommodations e 12

xii Table of Contents

Exam-day online reqUIirementsccceeveeeecssneeccssaneccssneeccssnneecssaneene cessreeessnnneeenns 12
System requirements e 12
Workspace requirements » 13

Identity requirements e 13

Top tips e 13

Candidate handbook e 13
Conclusioncceeeeeereeciiscneeereccnnnees cerereeeteieeiisaa ettt e et aata et s e s s e aas e e s s s b aas e s s essssnnanans 13
Useful links ... N . 14

Part 1: Git and GitHub Essentials 15

Chapter 1: Introduction to Version Control with Git 17
Getting the most out of this book — get to know your free benefitsccceeeveeeicrieeeccsnenees 17
Version CONLIOl DASICS ..ccicvverecsssurecsssniecsssnnecsssneecsssneccsssneecssnsescsssseessssssessssssesssssssesssssseees 19

Benefits of version control e 20

Challenges without version control e 21

Examples of version control systems e 21

Git’s dominance and popularity: why it stands out e 22

OVEIVIEW Of GIt .eeeereeeeerneecereneeeceeeeneeccennanens eeeeeeeeeenrseserartseseserrsssesaressesenrrssesararessanes 22

Git’s distributed nature ¢ 22

Branching and merging e 23

Understanding the Git concept ¢ 23
Scenario 1: Committing changes on the main branch e 23
Scenario 2: Creating a feature branch e 24
Scenario 3: Fixing a bug while developing a feature o 25
Merging e 26
Cloning e 26

Gitjargon and commands ¢ 28

Git configuration files 29

Table of Contents xiii
Lab 1: SELLING UP Git cecvceerrcrsnericssenecsssnneicsssneresssssessssssesssssssessssssesssssssessssssassssssesssssssese 29
Installing Git e 30
Configuring user identity 30
Creating a local repository e 31
Creating your first application source code ¢ 32
Some commON ChAllENGES ..uceeerruereiissneecsssnrecissneecsssnreccssseecsssneessssseesssssessssssesssssssesssssseses 33
SUMMATY .eeueerencrenccnencerenccrencenes ceeeeeenntettttetnttttttttttanientetttasietanssanesasssansssanensanes .34
Test YOUr KNOWIEAGE cceeevnuueeeeiiiiiiieeneetiiiisnneetetecsnnneeeeticssneeseessesssssssssstsesssssessessssssssens 35
Useful links ... ceeeetestestesaesre s te s re st e aas R e s R s e R s s Rt s R e s R e e R s e R s e Rt e Rt e R s e s nessnessbens .35
Chapter 2: Navigating the GitHub Interface 37
Technical requirements N 37
GitHub overview and offeringscc.ccceveccceiissceeiisssneieissneicssssensssssescsssescsssssessssssesessassees 38
Whatis GitHub? ¢ 38
Differences between Git and GitHub e 38
Beyond just developers e 40
Core functionalities ¢ 40
Collaboration e 40
Productivity e 40
Security o 41
Scale o 41
Al and automation e 41
Understanding the open source concept o 41
Available plans and offerings ¢ 43
GitHub Free o 43
GitHub Pro e 43
GitHub Team o 44
GitHub Enterprise o 44
GItHUD QCCOUNL LYPES cevverrcrruneresssserssssserssssssescsssssrssssssessssssssssssssesssssssssssssssssssssesssssssessassssss 45
Individual e 45

Organization e 46

Enterprise o 47

Xiv

Table of Contents

Lab 2.1: Familiarity with the GitHub interfaceccccceeeeerescuueeennnee.

Exploring open source repos e 48
Exploring the interface o 51
Creating your first user-scoped repository e 54

Creating your first org-scoped repository e 55

...... .48

Introduction to GitHub product featuresccceeeecneeereennnees

Repos e 56

Issues and pull requests ¢ 56
Projects o 57

Discussions e 57

Actions e 57

Copilot e 57

Advanced security e 57
Packages e 57

Codespaces ¢ 57

Other GitHub tools and featurescccceeeeereeneccereennencees

GitHub Desktop e 59
GitHub Mobile ¢ 59
GitHub CLI e 59

GitHub Marketplace « 60

SUMMATY ..cereennniceeenneicerenneceeenns ceeeeseseetennnterennseseeenns

Test your Knowledgeeeeeeveeeicssuneicisneeccsneencssnneees

Useful links ... eeeeeseerensscerarsrssesnrssecssrarsssenanssssrnrsenens

Chapter 3: Repository Creation and Management

Technical requirements cereeneetteeessananeeesas

Creating a new repository . cerenentteeessaanaaeeeeas

Repository naming conventions e 64
Initializing with README and .gitignore e 65

Choosing a license e 65

Table of Contents

XV

Lab 3.1— Creating a blank repositoryccccceeeeesseeeccssneeccsnnee

Create a new GitHub repo ¢ 66
Sign in to GitHub on VS Code and Clone Git Repository e 69

Commit changes into Git ¢ 73

The markdown language and the GitHub markdownccceveeiccsnericsseeicsssnercsssneeecsnnes

GFM e 75
Formatting text e 76
Creating links and images « 80
Tables ¢ 80

Advanced markdown features o 81

Lab 3.2 — Enriching README Files with Markdown Syntax

Repository settings and managementeeeeeeeeeessneeerencnns

..

Branch management ¢ 86
Managing issues and pull requests o 87
Security and access control « 87

Access permissions e 88

Security policies « 89

Automated security tools e 89
Webhooks and GitHub apps ¢ 89
Repository insights e 90

Collaboration and permissionsccccceeseesneeereccssesnnnens
Collaborators and teams o 91
Forking and PRs e 92
Code reviews e 92
Managing conflicts ¢ 93
Project boards ¢ 93

SUMMATY .eceeeeennccenennncceeennnceennns ceeesneeeerenancerennseceenans

Test your knowledgecc....... cerenenettnesssaanaataaeeas

Useful links ... eeseseeerenssseernrsssesnsnsesssrrrssesenanssesarnnreaes

75

85

91

.94

94

.95

xvi Table of Contents

Chapter 4: Basic Git Commands and Workflows 97
Technical requirements cereeneetreeessannaataeees cerereeettnessaaaa e sesssnannes 98
Common Git commands ... cesereesssantssssantessssntessssnnesssssnnessrsnnene . 98

Setting up a repository e 98
Creating a new repository with git init ¢ 98
Configuring repository settings using git config e 99
Making changes and committing ¢ 99
Editing files and checking the status with git status e 99
Staging changes with git add « 100
Committing changes with git commit e 100
Some more common commands e 100
Fetching changes from a remote repo e 101
Cloning an existing repository with git clone ¢ 102
Downloading changes from others with git pull ¢ 103
Pushing changes with git push ¢ 104
Linking a local Git repo to a remote repo with git remote add ¢ 105
Creating new branches with git branch ¢ 105
Switching between branches with git checkout ¢ 106
Merging changes between branches with git merge ¢ 106
Lab 4.1: Linking a remote repo and pushing changescccecceervivverrcsscnerciscecscsssnercssneees 107
Linking a local repo to a remote repo ¢ 107

Gt WOTKEIOWS «.erevureeeeenneecerenneeceeeesseceeeessecesssssssesssssscsesssssscssssssscssssssssssssssssssssssssssssssssssssnes 110

Troubleshooting common issues ceresneetteeessanaa et e s e annaseseses 111
Common issues and solutions e 111
Merge conflicts o 112
Detached HEAD state o 112
Reverting changes o 112
Resolving issues with remote repositories o 113
Best practices for troubleshooting e 113

SUMMATY .eeeeeeenncenncenncenncceanecns csessseseesesnssornesesntsesntsesnrstsersestssssnrstsnrsesaresennsssnnes . 113

Table of Contents xvii
Test your knowledgeceeeeruneeene ceseeeessntteesanteessstteeesstteeesssttesssrratesnrteeans 114
Useful links ... N . 115

Part 2: Collaborative Development on GitHub

Chapter 5: Branching and Merging Strategies

119

Understanding branches in Git .. ceesereessnteeesnseeessanaseesasaseaananes

119

Introduction to branches ¢ 120
Benefits of using branches ¢ 120
Creating branches o 121
Using the git command e 121
Using the GitHub website o 121
Using the IDE ¢ 122
Naming conventions and best practices » 124
Switching between branches ¢ 126
Updating the working directory 126
Preserving uncommitted changes o 127
Updating the branch pointer e 127
Stashing changes (optional) ¢ 127

Merging and conflict resolutioncceeeeervcneeeereccnnnees

Types of merges 129

Merge commit e 129

Squash merge 130

Rebasing and merging e 132

Key differences between squash merge and rebase merge o 133
Performing merges o 134

Commands for merging branches o 134

Performing a regular merge o 134

Performing a squash merge o 134

Performing a rebase o 134.

xviii

Table of Contents

Best practices for clean merges ¢ 135
Conflict resolution e 135

Branch management techniquescccovvvueeereccissnneeeennen.

Managing branches in Git ¢ 137
Branch protection rules on GitHub e 137

Require a pull request before merging o 138

Require status checks to pass ¢ 138

Require conversation resolution before merging ¢ 138

Require signed commits ¢ 138

Require linear history e 139

Require merge queue o 139

Require deployments to succeed o 139

Lock branch e 139

Do not allow bypassing the above settings ¢ 139

Restrict who can push to matching branches ¢ 140
Targeting branches o 141

Using the fnmatch syntax e 141

Steps to configure dynamic branch targeting 142
Configuring the default branch e 143

Benefits of setting a default branch e 144
Collaborative branch management e 145

SUMMATY eoceeeeennccerennnccereannceenans ceeeseeeeerenancerennseccenans

Test your knowledge cerereetttieessaanaeeseseaas

Useful links ... eeseseeerenssseeensnsseenansesennnnssesenanssessrnnseane

Chapter 6: Pull Requests and Code Reviews

. 145
146
. 147

149

Technical requirements cesereressaneesssnanesennane

Whatis a pull request?cceeeevuerrcssnercsannes

How was code managed before pull requests existed? ¢ 150
Version control systems (VCSs): o 151

Manual code reviews: o 151

Table of Contents

Xix

Branching and merging: e 151

Documentation and change logs: e 151

The pull request lifecycle ..

Creating a pull request ¢ 151

Whatis a diff? e 152

Good practices for writing clear descriptions e 153

Review process overview e 153

Lab 6.1: Conducting a code review with a pull request

Step 1: Create a new GitHub user for review o 155

Step 2: Invite a collaborator e 156

Step 3: Clone the repository e 161

Step 4: Make code changes o 162

Step 5: Create a pull request ¢ 163

Step 6: Conduct a code review e 164

Step 7: Approve the pull request o 168

Step 8: Merge the pull request ¢ 169

Conducting effective code reviews

Code reviews generally serve two main goals: e 170

Review techniques ¢ 170

Providing constructive feedback ¢ 170

Using GitHub tools for reviews e 171

Integrating changes with confidence
Final checks before merging: 171

Understanding merge conflicts and resolutions e 172

Merging strategies o 172

Post-merge best practices e 172

Some food for thought e 173

SUMMATY .cceeceennnennnee

........................

..........

Test your knowledge
Useful links ...

151

155

171

.173

174

.174

XX Table of Contents

Chapter 7: Issues, Projects, Labels, and Milestones 177
Technical requirements cereenentteeessaaraaeeenes cerereseetieeissnnaattesessssaaaa et sessanaas 178
INErOdUCTION L0 ISSUES tererrrrrrrererereressesssssssssssssssssssssssssssssssess 178

Title and description 179
Labels ¢ 180

Types ¢ 180

Assignees ¢ 181
Milestones o 181
Comments o 181
Reactions e 181

Linking issues and pull requests o 181
Templates ¢ 182
Notifications e 182

Search and filtering e 182

Cross-repository issues ¢ 182

Lab 7.1: Creating and managing iSSUES ...ccccceeeessnrrecssnrecssnercsssnneesssssescsssseessssssessssssesssssnes 183
Using issue templates ¢ 186

Lab 7.2: Creating an iSSUE tEMPIALecccevvvueeeericiissneeeeiecissssnneeiessssssssestescssssssssesssssssssnes 187

Linking issues to pull requests ¢ 190

What is a GitHub issue number? e 191

Managing and creating labelscouieieeiniiniieniieniieniinieenieeneenresn e esseesasesanne 191
Setting and tracking milestones . ceeeteesstrtessttteesnateessstttesatteesstteeessrttesssrataesss 192
PIOJECLS weueeeerercrrrsenneeiecccsssnneneenscssssnnnes cerereeettieeissanaa st e s e saaa e e e ses s sannasesesns 194

GitHub Projects Classic e 194
GitHub Projects 2.0 ¢ 195

Differences between GitHub Projects Classic and GitHub Projects 2.0 « 196

SUMMATY eeceerennncenennncceeennnceeenns ceeesseseetettneettttteettatssesetarssssettansesesannsssssarasesenane .197

Test your knowledge cereseetteieiisiaaa et te e s s st st s e s e s b s a et st e s s s snnase s sennnas 198

Useful links ... eeesseeeeensssesennnrseseransssesnnsnsesennrrsssnnnrssesnsnssesarnssssrnnsesans 198

Table of Contents xxi

Chapter 8: GitHub Actions and Automation 201
Technical requirements ceeeeneetteeessannaatneeas cerenesttesissanaaenessssaneees 201
Introduction to GitHUD ACHIONSceecrsueeecssneensssneensssanencsssneessssssessssansessssssessssansene e 202

How Pipeline as Code supports GitHub Actions e 202
Key components of GitHub Actions ¢ 204
Events that trigger a workflow e 204
Jobs, steps, and runners e 206
GitHub-hosted versus self-hosted runners e 207
Workflow syntax and file structure ¢ 208
Lab 8.1: Getting started With GIitHUD ACHIONSeceecvvnericssneresssnticsssseessssssescssseessssssescssanes 210
Setting up your first workflow e 210

Defining a simple workflow that runs a basic command, such as printing “Hello, World!” e
210

Exploring the GitHub Actions Marketplace 211

Incorporating these actions into your workflow e 211

The GitHub Actions Marketplace cereneetteeessaras et ese s annaneseses .212
Combining actions e 212

Best practices in creating Workflowsccoueeeueecseecsnecsneinsueensnecnseecsnecsnecssnecssseesssseesane 213

CI/CD With GitHUD ACLIONS cceeeeerrrrreeeeecesssssnneeeecesssssnsesseccsssssnnsssassssssssnnssassssssssnnsans 214

Setting up Continuous Integration (CI) » 214
Implementing Continuous Deployment (CD) o 214

Advanced CI/CD techniques e 215

SUMMATY .eeeeeeencenncenncennccennncens csecssesucsesncessnssesussesntessaseisesessuressaressaressaressansesanes . 215
TeSt YOUT KNOWIEAZE cccueveriersuniiisssneiiissnniicssneiessssneicssseiesssssessssssesesssssssssssesessasssssssssessases 216
Useful links ... ceeseteessateeesattee bt tees bt ttes b bt e e s bt e e e bbbt e e s bRt e e s bbbt e e bR a e e bbb e ee bbbt eesss . 217

Chapter 9: Engaging with the Community through GitHub Discussions 219

Technical requirements cereenesttenessanantsanens cereseetttteesssaanatttes s annasssesessanaees 219

Introduction to GitHub DiSCUSSIONS ...cceveeerereeecereaneees eereseeernresecernresessnnrnnnns 219

Threaded conversations ¢ 220

xxii Table of Contents

Categories and custom categories e 221
Polls e 222

Starting a GitHub discussioncceeeneee. cesssseeeeesesssssnntaneessssssssssannesssssans 223

Enabling GitHub Discussions e 223

Setting up discussion categories e 225

Creating a new discussion thread e 225
Verification e 227

Framing questions and topics 228

Encouraging participation and engagement e 228

Examples of public GitHub discussions e 228

Best practices for community engagementcccceeceeesseeessneensnnecsanensnensseesseeane ceee 229
Fostering a welcoming environment e 229
Active participation and moderation ¢ 230
Handling conflicts and disagreements ¢ 230
Recognizing and rewarding contributions e 231
Leveraging Discussions for project feedbackccevvueeecssniicssnercsssneiicssnercsssneiccssnneccssnnees 231
Soliciting feedback from the community e 231
Analyzing and interpreting community input e 233
Incorporating feedback into project development o 233

Continuous improvement and iteration e 234

SUMMATY «.cereennnicreenneicerenneceeenns eeeeseseettntettetattttetttnstttattsssetarssssesarssssersrssssssarsssseranns 234
TeSt YOUT KNOWIEAZE .eecvurrreersunriicssnniicssnrecissnneecssnnecsssnneecsssseecsssssescssssesssssssesssssseesssssssssns 235
Useful links ... ceeeeseessteesaeestee s aae s st e b e e b e e s s e e st essasesssaa s saaessaessssanen 236

Part 3: Leveraging GitHub for Career Advancement 237

Chapter 10: Building and Showcasing Your GitHub Presence 239
Technical FEQUITEIMENTS ..eiiirrrrercssserecssssrecsssseresssstiesssssessssssesssssessssssssssssssssssssssassssasssssns 240
Crafting a professional GitHUD Profileccecevvueriissnriissnniicssneiesssnneicssneecssssseccssssencssanes 240

Profile basics e 240

Table of Contents xxiii

Contact information e 242
Pinned repositories o 242
Activity overview e 243

Showecasing projects and cONIIDULIONScierevuerisssniicsssneressssticsssseressssnssssssercsssnes .. 244

Project selection e 244
Documentation e 244
Contribution guidelines ¢ 244
Visuals and media e 245
Advanced profile setup ¢ 245
Badges ¢ 246

Stars e 247

Utilizing GitHub Pages for personal branding N 247

Setting up GitHub Pages o 247
Content creation e 248
SEO and analytics ¢ 248
Continuous improvement e 248
Lab 10.1: Creating a GitHub page to showcase your profile and skKillsccceecueeecsneercsunnes 249
Step 1: Create a new repository e 249
Step 2: Clone the repository e 249
Step 3: Create your website ¢ 250
Step 4: Customize your site (optional) ¢ 250
Step 5: Commit and push changes o 251
Step 6: Enable GitHub Pages o 251
Step 7: View your site o 251
Step 8: Continuous improvement e 252

SUMMATY .ceeeenneicreenneicerenneceeenns eeeeeeseettaneitetattttettatssttttttssseterssssesarssssstsrssssssarssssseanes 252

TeSt YOUT KNOWIEAZE ceeeureriirsuniiicssnnricssnrecnssnniecssnnecsssnneecsssseecsssssescssssesssssssesssssessssssscssns 253
Useful links ... ceeeeseesiteesteestee s ta et a e b e e b e e b s e st e s s b e s s b e s s aa e saaessasanen 253

XXV

Table of Contents

Chapter 11: Contributing to Open Source Projects

255

Technical requirements ceeeeneetteeessannaatneeas

Exploring the world of open sourceccoeeeeeruecernecenncen.

Introduction to open source ¢ 256
What is open source and why does it matter? e 256
Why you should contribute o 256
How to discover the right projects ¢ 257
Using GitHub’s Explore feature ¢ 257
Searching for projects by language, topic, or technology e 257

Evaluating project activity and community engagement o 257

Joining open source communities ¢ 258
Engaging with project maintainers and contributors e 258

Participating in forums, chat rooms, and mailing lists e 258

Lab 11.1: Forking a repository — a complete contribution workflow

Setting up your environment e 259

Forking the repository e 259

Cloning your fork ¢ 260

Configuring the upstream remote 260
Understanding the contribution flow ¢ 261

Understanding the workflow e 261

Keeping your fork updated ¢ 262

Creating a new branch for your changes ¢ 263

Making and committing changes ¢ 263
Submitting a pull request ¢ 264

Pushing changes to your fork ¢ 264

Submitting your contribution e 265
Handling feedback and revisions e 265
Merging your contribution once approved ¢ 268

Best practices summary e 269

Table of Contents XXV
Understanding open source licensing ... ceseeeeesssnttessnnttessatteessnatessasanssananessnaaane . 270
Introduction to open source licenses ¢ 270
Importance of licensing in open source projects e 270
Common open source licenses e 270
Choosing the right license for your contributions e 271
Understanding the implications of different licenses o 271
How to apply a license to your own projects e 272
License compliance o 273
Ensuring your contributions comply with the project’s license ¢ 273
Understanding the legal and ethical considerations e 274
Case studies and examples o 274
Real-world examples of licensing issues and resolutions e 275
Best practices for maintaining compliance ¢ 275
SUMMATY .eceerenneerrenenccesencecesanne eeessessettenetsettatsstestarssstrarssssssarsssessarssssssaressssanne 276
TeSt YOUT KNOWIEAGE cccuvveriirruniicsssnniisssniicssssticssssnnicssstiesssssissssssssssssssnssssssesssssssssssansesases 277
Useful links ... ceeseteessatteisattess sttt tes bt te s bt e e s bt e e e b bt s e s bR st e e bRt e e bRt e e e Rt e e e bbb e eesen .277
Chapter 12: Enhancing Development with GitHub Copilot 279
Technical requirements ceresseteeeesisssntteteeessssrttateesssssrtttttesesssrttateesessrsrttataneessrns 279
What is GitHub Copilot?cccccvveeerreccnnnees N 280

Historical context ¢ 281
Support for multiple LLMs o 281

Choosing the right AI model for your work e 282
Available Copilot plans ¢ 283
How does it work? ¢ 286
Copilot Chat e 286

What is its relationship with ChatGPT? ¢ 287
Copilot CLI » 288

Getting started with the Copilot CLI 289
Copilot within the github.com Ul ¢ 290

Getting started with Copilot on github.com e 291

XXVi

Table of Contents

Copilot Spaces ¢ 292

Getting started with GitHub Copilot Spaces o 292
Copilot on GitHub Mobile ¢ 293
Copilot agents 293

Copilot coding agent e 294

Copilot code review o 294

Lab 12.1: Getting started with GIitHUD COPIlOtuuueeeerrieiiisineeriecisisnneeeieecssssneneeesccssnees 294
Installing Copilot in your editor e 295
Getting started with Copilot Chat in the IDE ¢ 296
Autocompletion in the IDE ¢ 297
Using GitHub Copilot effectivelyccovveicvsreiiicsseiiissnieinssneeecssneccssneccssneeccssneecssnseccsns 297
Best Practices and tiPSeeeeeeeceisiivneetiecisisssneetieeisiisseseiesessssssssssssessssssssestsessssssssssssessssass 298
SUINIMATY eeerieennceeneennnceeanccenncctanccranccrsssecsssscsssccsssscsssssssssssssssssssesssssssssssssscsasssssssssanse 298
Test YOUr KNOWIEAEE ..ccceveeuuuuueeiiiiiiiinieeetiiiiiienneetiicciinneeeeteccsseeseetesesssssnssseessssssssessesssns 299
USEfULIINKS .ouveerniiiiniiiineinneensnniesnninsnnecinisssnecsssecsneesssscssseesssssssssssssssssssssssssssssassssasessases 300
Chapter 13: Funding Your Projects with GitHub Sponsors 301
Introduction to GitHUD SPONSOLS w.ccccvuericsssnriessssercsssserssssssesesssssrssssssescssasssssssssessssassssssnes 301
Benefits of using GitHub Sponsors ¢ 302
Eligibility and requirements e 302
Success stories ¢ 303
Setting up sponsorship fOr YOUT Projectsc.eeiecicseiicsssneiesssniscsssseiessssnssssssssssssses .. 303
Sponsorship buttons e 305
Defining sponsorship tiers e 306
Setting up payment methods ¢ 306
Promoting your sponsorship profile « 307
Engaging With YOUT SPOMNSOTS cicccvevveeeerreiissssneeeieecsssssssseeeiessssssssstssssssssssssesssssssssssssssesssns 307

Transparency ¢ 308
Providing value to sponsors e 308
Building long-term relationships ¢ 308

Handling sponsorship challenges ¢ 308

Table of Contents xxvii
SUMMATY eoceeeeennccerennnccceannnceennns ceeesseecerennncesannnecsenans ceeeeseeerannneeeeannsecaennnnes 309
Test your knowledge N 309
Useful links ... ceeeeesaressaneesaateaatessate b atebatebaee st e s banebasesansraaes 310

Part 4: Advanced GitHub and Exam Preparation

Chapter 14: Project Management with GitHub Projects

Technical requirements ceeesesttetessssnane st tessssaanasttesssssennastsesens

Introduction to GitHub projects . cererestteeesssanasttseesssnnnaees

Getting started with GitHub Projects » 314

Creating and customizing board columns e 315

Project layout e 316

Views o 318

Custom fields e 319

Adding and editing items ¢ 319

Archiving items o 319
Understanding project visibility (public versus private) e 320
Project scope (organization versus user) e 320

Integrating projects with issues and milestones o 321

Lab 14.1: Setting up project boardsccceeveveerieecsscneeeeesccsscsnneeereccsennes
Creating a project board e 321
Customizing columns e 322
Adding and managing cards e 323
Modifying visible fields e 325
Filtering and sorting e 326

Automating project workflows .. cereneneeenees cerernnneneiessnnes
Using built-in automations e 327
Using GitHub Actions e 330
Using the REST API « 330

330

SUMMATY .eeurerencrenceenceranccsencenes ceeeeennetanetansenneesanes

XxXviii

Table of Contents

Test your knowledgeceeeeruneeene cesreeessnneeesantesessnanene

Useful links ... eeeeeeeeennesseerarersesnresecessrrssesesnrssesennrsssesnrrrsessnres

Chapter 15: Security Practices and User Management

Technical requirements cereeneetteeesaanaaeneses

GitHub security featuresccceeeveercsssnercsssnercsans
Two-Factor Authentication (2FA) » 334
Available 2FA methods e 334
Setting up 2FA on GitHub e 336
Branch protection rules 336
Security configurations e 337
What is Dependabot? e 338

Security alerts and vulnerability management e 339

Managing access and Permissionsccceessseeecssneccssneeccssnseccnns
User roles and permissions e 342
Overview of different user roles o 342
Assigning roles to users e 342
Team management e 345
Creating and managing teams e 346
Assigning repository access to teams e 347
Collaborator access control e 347
Adding collaborators to repositories: e 347
Setting permissions for collaborators: e 347
OAuth and personal access tokens e 348
Managing OAuth applications ¢ 348

Creating and using personal access tokens o 348

Best practices for repoSitory SECUTILY ...cccccveereeecrsssnneeeereccsssnnnnees

...... cee 342

350

Code scanning with Static Application Security Testing (SAST) tools 350

CI/CD pipeline security measures 351
Monitoring and auditing activities o 352

Incident response and recovery e 352

Table of Contents XXix
SUMMATY eoceeeeennccerennnccceannnceennns eeesseseeteetnseettttnseestarnseserasnscessasssssarssssssasnsessasans 353
Test your knowledge N 354
Useful links ... ceeeetesnestesaestesatesanesatesesaesaeeaassbassaesssesaesaes 355
Chapter 16: Mock Exams and Study Strategies 357
Areas of concentration eeesststteeretessssttetssttettrtetssssetessstttrresessssaaens 357

What to expect e 358

Introduction to Git and GitHub questions — big deal 358

Nuances of buttons and icons e 359

The GenAl evolution ¢ 359

Multiple-answer questions e 359

GitHub gists and wikis e 360

The amazing GHCertified! « 360

GitHub Docs is your friend e 361
MoOCK €Xam qUESTIONSeeeeeereeisircneeerecsssssnneserescssssneseensees 362

Answers to chapter quizzes e 362

Additional questions e 369
CONCIUSION «uverrerrrensnessnessuessnesssesssesssessuesssesssesssesssesssesssnsssesssesssesssesssessssssessassssnsssnssanssansss 374
What’s next after certification?ececevveeiecsseiicsssniiicssneicssnticsssseresssseecssssesesssssesessssens 375
Chapter 17: Unlock Your Book’s Exclusive Benefits 377
How to unlock these benefits in three €asy StEPSececcvveercsssnercssneicsssnneccssnsescssaneees 377
Other Books You May Enjoy 383
Index 387

Preface

Hello! Welcome to GitHub Foundations Certification Guide. GitHub is the most advanced AI-pow-
ered collaborative developer platform; hundreds of millions of developers across the world build
software on it. This book is a guide to the GitHub Foundations Certification, one of the five exams
available as of the time of writing. It is the entry-level exam, and arguably the easiest of the five
(although this is subjective!).

GitHub Certifications help you to reinforce your knowledge, establish your skills, and prove your

proficiency in using the platform.

This book serves as a comprehensive guide to preparing for the GitHub Foundations Certification
exam, detailing the critical components, expectations, and strategies necessary for success. It
outlines the significance of the GitHub Foundations Certification, which validates expertise in Git
and GitHub, and highlights the competitive edge it provides in the job market. The certification
validates skills in navigating the platform, collaborating securely, and contributing effectively

to software and open source projects.

I will provide information on the exam structure, preparation strategies, and domains to focus
on to increase your chances of acing the exam. In addition, I will dive deeper into the world of
Git and GitHub, highlighting the various features and products. You will learn the basics of Git
repositories, source control management on GitHub, GitHub issues, pull requests, projects, GitHub

Actions, Copilot, Discussions, and many other features that have made the world love it so much.

There are two relevant takeaways from Insight’s reportin January 2025 (https://interviewprep.

org/are-software-developers-in-demand-opportunities-and-growth/):

e Digital transformation: The ongoing digital transformation across various industries,
such as healthcare, finance, and retail, is driving the demand for skilled developers. Com-
panies are enhancing their digital presence and operational efficiency, which requires

continuous development and optimization of software solutions.

https://interviewprep.org/are-software-developers-in-demand-opportunities-and-growth/
https://interviewprep.org/are-software-developers-in-demand-opportunities-and-growth/

Xxxii Preface

e Emerging technologies: The integration of emerging technologies such as artificial in-
telligence (AI), machine learning, and blockchain is creating new opportunities for devel-
opers. Businesses need developers proficient in both traditional programming languages

and cutting-edge innovations.

Excellence in teamwork and practical experience with collaborative tools and version control

systems would be sought after. Proficiency on GitHub will set you apart!

Who this book is for

This book s for software developers and engineers looking to master Git and GitHub for efficient
code management, project collaboration, and streamlined workflows. Infrastructure engineers
and system administrators will benefit from learning how to manage scripts and track infra-

structure changes.

Educators and trainers can use this guide to teach software development and prepare students for
industry certifications. Aspiring developers and tech professionals will find it a valuable resource

for building essential GitHub skills and advancing their software development careers.

Itis aimed at entry-level developers, seasoned software engineers, platform engineers, and project

managers, providing a pathway to exciting career opportunities.

What this book covers

Sprint O, Preparing for the Certification, helps you get ready for the certification journey, outlining

the necessary preparations and mindset.

Chapter 1, Introduction to Version Control with Git, introduces the concept of version control, its
importance in software development, and the basics of Git. You will learn why Gitis the industry
standard for version control and how it can significantly improve coding efficiency and collab-

oration.

Chapter 2, Navigating the GitHub Interface, explores the GitHub platform, helping you understand
its interface and learn how to navigate through its various features. This chapter is crucial for

utilizing GitHub effectively for project management and collaboration.

Chapter 3, Repository Creation and Management, discusses creating and managing GitHub repos-

itories, including best practices for naming, initializing, and licensing.

Preface xxxiii

Chapter 4, Basic Git Commands and Workflows, guides you through intermediate Git commands,
flags, and workflows, including setting up repositories, making changes, collaborating with oth-
ers, and troubleshooting common issues. You will learn how to use Git for everyday development

tasks, ensuring a smooth and efficient workflow.

Chapter 5, Branching and Merging Strategies, examines the branching model, as well as branching
and merging strategies in Git and GitHub, highlighting structured branching for team collabo-

ration and techniques to enhance productivity and code quality.

Chapter 6, Pull Requests and Code Reviews, explains the concept of pull requests and code reviews
on GitHub for maintaining code quality and fostering collaboration in software development. It

highlights best practices for maintaining code quality through peer reviews.

Chapter 7, Issues, Projects, Labels, and Milestones, provides a basic guide to GitHub’s project man-
agement tools, focusing on issues, labels, and milestones, and includes practical exercises to
enhance understanding and application. It also teaches you how to use these features to track

progress and organize work within a team.

Chapter 8, GitHub Actions and Automation, provides an introductory guide to GitHub Actions,
covering its role in continuous integration and continuous delivery (CI/CD), the concept of
pipeline as code, key components and terminologies, practical lab exercises, and best practices

for creating and managing workflows.

Chapter 9, Engaging with the Community through GitHub Discussions, teaches you about GitHub
Discussions, a platform feature that fosters community engagement. This chapter covers how to

start discussions, respond to queries, and build a community around projects.

Chapter 10, Building and Showcasing Your GitHub Presence, explores how to build and showcase
a professional GitHub presence, including creating a standout profile, effectively showcasing

projects and contributions, and utilizing GitHub Pages for personal branding.

Chapter 11, Contributing to Open Source Projects, discusses how to contribute to open source projects
on GitHub, covering topics such as navigating the open source landscape, identifying suitable
projects, understanding open source licensing, and the benefits of contributing to the open source

community.

Chapter 12, Enhancing Development with GitHub Copilot, explores the transformative impact of
generative Al on software development, focusing on GitHub Copilot’s capabilities, setup, usage,

and best practices to enhance development workflows and elevate coding experiences.

XXXIV Preface

Chapter 13, Funding Your Projects with GitHub Sponsors, teaches you how to set up and manage
GitHub Sponsors to secure financial support for open source projects, including creating an ap-
pealing sponsorship profile, engaging with sponsors, and leveraging sponsorship tiers for sus-

tained project growth.

Chapter 14, Project Management with GitHub Projects, is a guide on using GitHub Projects for effective
project management, covering setup, customization, key features, and automation to enhance

team collaboration and workflow efficiency.

Chapter 15, Security Practices and User Management, provides an in-depth exploration of GitHub’s
security practices and user management, covering topics such as two-factor authentication,
branch protection rules, security configurations, managing access and permissions, and best

practices for repository security.

Chapter 16, Mock Exams and Study Strategies, includes deeper preparation tips, mock exam ques-

tions, study strategies, and tips for mastering Git and GitHub features.

To get the most out of this book

You will need to have a basic knowledge of writing/editing code or scripts in one language, as

well as the following tools.

Software/hardware covered in the book | Operating system requirements

Visual Studio Code 1.99.3 Windows, macOS, or Linux

Command Prompt, PowerShell, or

Terminal

GitHub.com account

Obtaining a GitHub.com account is free. You can sign up at www.github.com.

If you are using the digital version of this book, we advise you to type the code yourself or
access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

GitHub-Foundations-Certification-Guide. We also have other code bundles from our rich

catalog of books and videos available at https://github.com/PacktPublishing. Check them out!

www.github.com
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide
https://github.com/PacktPublishing

Preface XXXV

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this book.
You can download it here: https://packt.link/gbp/9781836206057.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter/X handles. For example: “This
will initialize a new repository and create a new . git directory containing all the necessary files

for version control.”

Ablock of code is set as follows:

public class HelloWorld {

public static void main(String[] args) {
System.out.println("Hello, World!");

}

Any command-line input or output is written as follows:

git config --global user.name "Your Name"

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,
words in menus or dialog boxes appear in the text like this. For example: “Select the Commit

directly to the main branch option and click on Commit changes.”

\/V; Warnings or important notes appear like this.

\l/

',@\' Tips and tricks appear like this.

https://packt.link/gbp/9781836206057

XXXVi Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-
back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.comwith a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http: //authors.packt.com/.

Share your thoughts

Once you've read GitHub Foundations Certification Guide, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://www.packt.com/submit-errata
http://authors.packt.com/
https://packt.link/r/1836206054

Sprint O

Preparing for the Certification

Welcome to the GitHub Foundations certification journey! Before you dive in, it’s important to
gain a solid understanding of what the certification exam entails. In this chapter, we’ll break

down the key components, expectations, and strategies to help you succeed.

Up until early 2024, developers and software engineers didn’t have a way to show proficiency
in GitHub. In the past, people would use measures such as the number of repositories on your
GitHub profile (which may include forked repos), the greenness of your contribution graph, your
open source contributions, and sometimes your achievement badges to judge your proficiency.
Many of these metrics would not be reliable for someone with fewer repositories in the public

space or who has not contributed to many high-profile open source projects.

From January 2024 and beyond, GitHub published the general availability of five certifications,

the GitHub Foundations certification being one of them:

e GitHub Foundations certification

e GitHub Actions certification

e GitHub Advanced Security certification
e GitHub Administration certification

e GitHub Copilot certification

Earning a GitHub certification will help you showcase your expertise on GitHub, giving you a

competitive edge as a professional.

2 Preparing for the Certification

This book focuses on everything you need to know to pass the GitHub Foundations certification
exam. In this chapter, we’ll take a closer look at what the exam involves and how to prepare for
it with confidence:

e Whatis the GitHub Foundations certification?

e Preparation strategies

e Exam-day test center requirements

e Exam-day online requirements

What is the GitHub Foundations certification?

The GitHub Foundations certification is a prestigious credential that validates your expertise in
Git and GitHub. It is the Level 100 certification designed to introduce you to the basic concepts
of Git and GitHub (yes, they are two different things: Git is not GitHub; this book will help you

learn the difference), its products, and features.

GitHub is home to over 150 million developers; it is the home of software developers. Some part

of the software you are using right now is likely built on GitHub.

Target audience

This certification is designed for entry-level developers, platform engineers, IT operations and
support engineers, project managers, or program managers. It’s also a great option for experienced

professionals looking to formalize their GitHub skills or fill in foundational gaps.

The certification demonstrates your ability to navigate the platform, collaborate securely, and

contribute effectively to software projects and open source projects.

When you pass this exam, you will earn a badge that looks like the following figure:

GitHub

Foundations

Figure 0.1: GitHub Foundations certification badge

Sprint O 3

Exam structure

Now, let’s look at the structure of the exam. We will cover the main areas to expect questions from

and the different forms the questions can take. You will be timed in the exam.

The exam covers a range of topics related to Git and GitHub. You'll encounter questions on version
control, Git commands, collaboration workflows, and more. Make sure to review the official cer-
tification guide for a detailed breakdown of the content. This is available at examregistration.
github.com. The content covers seven objective domains, providing a structured outline that

highlights specific topics and skills that the exam will cover.
The following are the objective domains; we will cover them all in this book.

Your combined performance across all 7 domains must total at least 72% to pass (as at the time

of writing this book; this may vary slightly). These are shown in the Skills measured section at

the preceding link.

Domain Exam Percentage
Domain 1: Introduction to Git and GitHub 18%

Domain 2: Working with GitHub Repositories 10%

Domain 3: Collaboration Features 28%

Domain 4: Modern Development 11%

Domain 5: Project Management 9%

Domain 6: Privacy, Security, and Administration 15%

Domain 7: Benefits of the GitHub Community 9%

Table 0.1: Objective domains of the certification exam
The following shows a breakdown of each domain.

Domain 1: Introduction to Git and GitHub

Git and GitHub basics

Describe version control

Define distributed version control

Describe Git

Describe GitHub

Explain the difference between Git and GitHub

Describe a GitHub repository

Describe a commit

examregistration.github.com
examregistration.github.com

4 Preparing for the Certification

Describe branching

Define a remote in Git terminology

Describe the GitHub flow

Describe Git flow

GitHub entities

Describe the different GitHub accounts (personal, organization, and enterprise)

Describe GitHub’s products for personal accounts (free and Pro)

Describe GitHub’s products for organization accounts (free for organizations and teams)

Describe the different deployment options for GitHub Enterprise

Describe the features in the user profile (metadata, achievements, profile README, repositories,

pinned repositories, stars, etc.)

GitHub Markdown

Identify the text formatting toolbar on issue and pull request comments

Describe Markdown

Identify the basic formatting syntax (headings, links, task lists, comments, etc.)

Explain where to find and use slash commands

GitHub Desktop

Explain the difference between GitHub Desktop and github.com

Describe the available features with GitHub Desktop

GitHub Mobile

Describe the available features with GitHub Mobile

Explain how to manage notifications through the GitHub Mobile app

Domain 2: Working with GitHub Repositories

Understanding GitHub repositories

Describe the components of a good README and the recommended repository files (LICENSE,
CONTRIBUTING, and CODEOWNERS)

Explain basic repository navigation

Explain how to create a new repository

Describe repository templates

github.com

Sprint O

Describe the different features of maintaining a repository

Describe how to clone a repository

Describe how to create a new branch

Explain how to add files to a repository

Identify how to view repository insights

Explain how to save a repository with stars

Identify keyboard shortcuts

Explain feature previews

Using the command palette

Domain 3: Collaboration Features

Issues

Describe how to link a PR to an issue

Describe how to create an issue

Describe the difference between an issue, discussion, and pull request

Explain how to create a branch from an issue

Identify how to assign issues

Describe how to search and filter issues

Describe how to pin an issue

Explain basic issue management

Explain the difference between issue templates and issue forms

Explain how to use keywords in issues

Pull requests

Describe a pull request

Explain how to create a new pull request

Describe the base and compare branches in a pull request

Explain the relationship of commits in a pull request

Describe draft pull requests

Describe the purpose of the pull request tabs (conversation, commits, checks, and files changed)

Identify how to link activity within a pull request

Explain the different pull request statuses

6 Preparing for the Certification

Recognize how to comment on a posted link to a line or lines of code from a file

Describe code review with a CODEOWNERS file

Explain the different options for providing a code review on a pull request (comment, approve,

request changes, and suggested changes)

Discussions

Describe the difference between discussions and issues

Explain the options available with discussions (announcements, ideas, polls, Q&A, and show
and tell)

Identify how to mark a comment as an answer to a discussion

Explain how to convert a discussion to an issue

Recognize how to pin a discussion

Notifications

Describe how to manage notification subscriptions

Explain how to subscribe to notification threads

Describe how to find threads where you are @-mentioned

Identify the notification filtering options

Explain the different notification configuration options

Gists, wikis, and GitHub Pages

Explain how to create a GitHub gist

Describe how to fork and clone a gist

Explain GitHub wiki pages

Describe how to create, edit, and delete wiki pages

Explain the visibility of wiki pages

Describe GitHub Pages

Domain 4: Modern Development

GitHub Actions

Describe GitHub Actions (basic understanding)

Explain where you can use GitHub Actions within GitHub (general event types)

Explain where you can find existing GitHub Actions

Sprint O

GitHub Copilot

Describe GitHub Copilot

Describe the different plans for GitHub Copilot

Explain how to get started using GitHub Copilot

GitHub Codespaces

Describe GitHub Codespaces

Identify how to start a GitHub codespace

Describe the codespace life cycle

Describe the different customizations you can personalize with GitHub Codespaces

Recognize how to add and configure dev containers

Explain how to add an * Open in GitHub Codespaces"' badge to a README file

Explain how to use the github.dev editor

Explain the differences between the github.dev editor and a GitHub codespace

Domain 5: Project Management

Manage your work with GitHub Projects

Describe GitHub Projects

Explain the layout options for projects

Describe the configuration options for projects

Explain what can be accomplished with project views

Explain the use of labels

Explain the use of milestones

Describe how to use and create template repos

Explain how to create, edit, and delete saved replies

Describe the benefits of using a saved reply

Recognize how to add assignees to issues and pull requests

Explain how to use project workflows

Describe how to convert checklist items to sub-issues

github.dev
github.dev

8 Preparing for the Certification

Domain 6: Privacy, Security, and Administration

Authentication and security

Explain how to secure your account with 2FA

Describe the different access permissions

Explain Enterprise Managed Users (EMUs)

GitHub administration

Explain how to enable and disable features

Recognize repository permission levels

Identify the options for repository visibility

Explain repository privacy setting options (branch protections, codeowners, and required reviewers)

Describe the main features and options in the Security tab

Define repository insights

Explain how to manage collaborators

Explain how to manage organization settings

Describe members, teams, and roles in a GitHub organization

GitHub Secure Development

Describe the Dependency Graph

Explain what Dependabot is

Describe Dependabot security updates

Explain Dependabot version updates

Define code scanning

Define secret scanning

Explain push protection

Domain 7: Benefits of the GitHub Community

Describe the benefits of the open source community

Describe open source

Describe how GitHub advances open source projects

Identify how to follow people (receive notifications and discover projects in their community)

Explain how to follow organizations (receive notifications about their activity)

Describe the GitHub Marketplace and its purpose

Sprint O 9

Describe how to apply the benefits of open source

Describe Innersource

Identify the differences between Innersource and open source

Describe forking and contributing to open source projects

Describe the components of a discoverable repository

Question types

The exam has 75 questions in all (as at the time of writing this book) and you have 2 hours to
answer them. Expect a mix of multiple-choice questions, scenario-based challenges, and prac-
tical tasks. A few questions may require you to analyze short code snippets (a few lines of code

or command line).

Other questions may want to test your detailed understanding by providing multiple similar
answers, though only one of them is correct. You will also come across questions where you are
required to select more than one answer. These questions will provide checkboxes next to each
answer rather than the single-select boxes. However, the question will explicitly specify exactly
how many answers it expects you to select, such as (Select two) or (Please select three). To get
full marks on such a question, you should select exactly that number of answers. Stay sharp and

practice different question formats.

Time limit
The certification exam is time-bound (2 hours). Allocate your time wisely across the sections.

Remember that efficient time management is key to success.

For example, take a look at the percentage breakdown of the objective domains in Table 1. Two
domains, Introduction to Git and GitHub and Collaboration Features, collectively carry 46% of your
score. It would be wise to spend the best of your time on these questions. In addition, a higher
score has been earmarked to Privacy, Security and Administration. Be sure to read about the

security features on GitHub, particularly GitHub Advanced Security.

10 Preparing for the Certification

Preparation strategies

In this section, we will explore various strategies that will help you pass the exam.

Study resources

Explore a variety of study materials, including official documentation, online courses, and prac-
tice exams. Familiarize yourself with Git concepts, branching strategies, and GitHub workflows.
Read this book!

The following are some recommended study resources:

e Thisbook! Be sure to read it from cover to cover. It has numerous helpful guides, practical
exercises, and mock questions to prepare you for the exam.

e Thavecurated alistof online resources on a GitHub gist (https://gist.github.com/ayode
jiayodele/524ccd4865c968bad12fcbbfd@7c8834). These include official training courses,

hands-on labs, YouTube videos, and other learning materials to supplement your learning.

Hands-on practice

Setup a GitHub repository and practice real-world scenarios. Create branches, merge pull requests,
and resolve conflicts. The more hands-on experience you gain, the better prepared you’ll be. You
will find some lab exercises at https://github.com/PacktPublishing/GitHub-Foundations-

Certification-Guide.

Mock exams
Take advantage of mock exams and practice questions available in Chapter 15, Mock Exams and
Study Strategies. These simulate the actual test environment and help you gauge your readiness.

Identify areas where you need improvement and focus your efforts accordingly.

In addition, there are practice questions at the end of each chapter to quickly test your knowledge

and establish what you have learned.

https://gist.github.com/ayodejiayodele/524ccd4865c968bad12fcbbfd07c8834
https://gist.github.com/ayodejiayodele/524ccd4865c968bad12fcbbfd07c8834
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide

Sprint O 11

Exam registration

You will need to schedule your exam in advance once you are prepared and ready. To regis-
ter for the exam, visit the certification details page (https://examregistration.github.com/
certification/GHF). The registration page will ask you to log in with your GitHub account. If
you are new to GitHub or you don’t have a GitHub account, follow the instructions on how to

create a free GitHub account in Chapter 2, Navigating the GitHub Interface.

GitHub Certification Registration \ .

In order to gain access to certifications please log in with your personal ; .
GitHub account to continue, if you are a partner with GitHub please follow the
directions below.

Login with GitHub

MNote: Enterprise Managed User accounts are not allowed to access GitHub
Certifications.

Figure 0.2: The exam registration landing page

After signing in, the registration will take you through a scheduling process. Here, you can choose
whether you want to take the exam at the test center nearest to you or online supervised by a
proctor. Available test centers and their locations will depend on your country and city. Both test

center and online exams are managed and scheduled by the same body (PSI Exams).
As of the time of writing this book, the exam cost is $49 (US dollars).

GitHub offers discounts and partner benefits on the exam cost in a number of ways. I will advise
you to explore what options are available to you. For example, your employer may be a partner,
a GitHub Enterprise customer, or a Microsoft Enterprise Agreement customer, and these offer
discountvouchers thatrange as high as 100% (Yay! Free!). Secondly, if you are a student, you may
be able to get this for free. For more information about how GitHub supports students and many

student freebies, visit https://education.github.com.

https://examregistration.github.com/certification/GHF
https://examregistration.github.com/certification/GHF
https://education.github.com

12 Preparing for the Certification

Exam-day test center requirements

Once registered, you will receive email confirmation of your exam appointment. Be sure to review
your exam name, date, start time, and location and confirm they are correct. The email will also

have directions to the exam location.

Identity requirements

A government-issued form of identification will be required, usually an international passport,

driver’s license, or similar.

Exam accommodations

You may request exam accommodations such as special equipment for those with low vision or
who are hard of hearing, breaks for medical reasons, or extra time for testing because the examis
notinyour native language. There are other forms of accommodations that can be considered as
well. Please read the handbook for more details and ensure you request this many weeks before

the exam day; it must be made before you schedule the exam.
For more information, please read the Candidate handbook section of this chapter.

Finally, I would suggest arriving at least 30—40 minutes before your exam time. If you have any

documentation to show, take both physical and electronic copies with you.

Exam-day online requirements

If you choose to take the exam online, there are some requirements you need to meet.

System requirements

e Supported operating systems: 64-bit Windows 10, Windows 11, macOS 11(Big Sur), macOS
12(Monterey), and macOS 13 (Ventura)

e Screen resolution: 1,366 x 768 or higher

¢ Internet bandwidth: Minimum 300 kbps download/upload speed

e Camera and microphone: Must be turned on throughout the exam
To be sure your system will be compatible with the online exam, you can perform a system check.
This check involves a series of instructions to follow that may include downloading the testing

software to your computer, performing sound tests of your microphone, validating access to your

webcam, and so on.

For more information, please read the Candidate handbook section of this chapter.

Sprint O 13

Workspace requirements

There is a minimum level of tidiness required at your desk and immediate surroundings. No one
else can be in the same room as you during the exam. Therefore, if you choose a home or office
space to sit for the exam, you must make sure it is empty of people and rid of clutter. For more

information, please read the Candidate handbook section of this chapter.

Identity requirements

You will be required to present a government-issued form of identification before you can check
in for the exam, both physically at a testing center or online. For more information, please read

the Candidate handbook section of this chapter.

Top tips
Here are some tips I would recommend:

e Perform system checks before and on the exam day.

e Beready atleast 20-30 minutes before your exam time.

e Choose a private location free of distractions.

e Ensure you have a great internet connection. Have a backup in case one fails.

e Make sure your mobile phone is reachable. Proctors may want to call you during the exam

if they can’t reach you through the in-app chat.

e Useareliable computer with a webcam.

Candidate handbook

The candidate handbook (https://www.pearsonvue.com/content/dam/VUE/vue/en/documents/
tech-specs/online-proctored/onvue-technical-requirements.pdf) offers a comprehensive
guide on preparing for the exam, exam registration, exam scoring, and reports. Get familiar with

the handbook before the exam day.

Conclusion

Understanding the certification exam is the first step toward achieving your GitHub Foundations

certification. Stay committed, study diligently, and soon you’ll be well prepared to ace the exam!

https://www.pearsonvue.com/content/dam/VUE/vue/en/documents/tech-specs/online-proctored/onvue-technical-requirements.pdf
https://www.pearsonvue.com/content/dam/VUE/vue/en/documents/tech-specs/online-proctored/onvue-technical-requirements.pdf

14 Preparing for the Certification

Useful links

e GitHub Foundations certification exam registration: https://examregistration.github.

com/certification/GHF

. Certification study guide: https://assets.ctfassets.net/wfutmusrlt3h/1kmMx7AwI4q
H8yIZgOmQlP/79e6ff1ldfdee589d84a24dd763bleef7/github-foundations-exam-study-
guide__1_.pdf

e GitHub Education—GitHub Foundation certification preparation resources: https://

education.github.com/experiences/foundations_certificate
e Candidate handbook: https://www.pearsonvue.com/content/dam/VUE/vue/en/
documents/tech-specs/online-proctored/onvue-technical-requirements.pdf

e Additional learning resources: https://gist.github.com/ayodejiayodele/524ccd486
5c968bad12fcbbfdo7c8834

https://examregistration.github.com/certification/GHF
https://examregistration.github.com/certification/GHF
https://assets.ctfassets.net/wfutmusr1t3h/1kmMx7AwI4qH8yIZgOmQlP/79e6ff1dfdee589d84a24dd763b1eef7/github-foundations-exam-study-guide__1_.pdf
https://assets.ctfassets.net/wfutmusr1t3h/1kmMx7AwI4qH8yIZgOmQlP/79e6ff1dfdee589d84a24dd763b1eef7/github-foundations-exam-study-guide__1_.pdf
https://assets.ctfassets.net/wfutmusr1t3h/1kmMx7AwI4qH8yIZgOmQlP/79e6ff1dfdee589d84a24dd763b1eef7/github-foundations-exam-study-guide__1_.pdf
https://education.github.com/experiences/foundations_certificate
https://education.github.com/experiences/foundations_certificate
https://www.pearsonvue.com/content/dam/VUE/vue/en/documents/tech-specs/online-proctored/onvue-technical-requirements.pdf
https://www.pearsonvue.com/content/dam/VUE/vue/en/documents/tech-specs/online-proctored/onvue-technical-requirements.pdf
https://gist.github.com/ayodejiayodele/524ccd4865c968bad12fcbbfd07c8834
https://gist.github.com/ayodejiayodele/524ccd4865c968bad12fcbbfd07c8834

Part 1

Git and GitHub Essentials

This part covers the basics and building blocks of mastering the Git version control system, as well
as providing a general understanding of what GitHub is, the functions of its products, and basic
repository creation. Upon completion, you will have built a solid foundation in Git and GitHub,

essential for any software development and version control tasks.
This part of the book includes the following chapters:

e Chapter 1, Introduction to Version Control with Git
e Chapter 2, Navigating the GitHub Interface
e Chapter 3, Repository Creation and Management

e Chapter 4, Basic Git Commands and Workflows

Introduction to Version Control
with Git

This chapter introduces you to the concept of version control, its importance in software devel-
opment, and the basics of Git. You will learn why Gitis the industry standard for version control

and how it can significantly improve coding efficiency and collaboration.
This chapter covers the following topics:

e Version control basics
e Overview of Git
e Lab I: Setting up Git

e Some common challenges

Getting the most out of this book — get to know your
free benefits

Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge

your learning journey and help you learn without limits.

18 Introduction to Version Control with Git

Here’s a quick overview of what you get with this book:
Next-gen reader

Our web-based reader, designed to help you
learn effectively, comes with the following

features:

¢& Multi-device progress sync: Learn from any

device with seamless progress sync.

B Highlighting and notetaking: Turn your

reading into lasting knowledge.

HWBookmarking: Revisit your most important

learnings anytime.

1 Dark mode: Focus with minimal eye strain

by switching to dark or sepia mode.

Figure 1.1: lllustration of the
next-gen Packt Reader’s fea-
tures

Interactive Al assistant (beta)

Our interactive Al assistant has been trained
on the content of this book, to maximize
your learning experience. It comes with the

following features:

+ Summarize it: Summarize key sections or
an entire chapter.

#. Al code explainers: In the next-gen Packt
Reader, click the Explain button above each
code block for Al-powered code explana-

tions.

Note: The Al assistant is part of next-gen Packt

Reader and is still in beta.

Figure 1.2: lllustration of Packt’s
Al assistant

Chapter 1

19

DRM-free PDF or ePub version

PDF]

EPUS

Figure 1.3: Free PDF and ePub

Learn without limits with the following perks

included with your purchase:

& Learn from anywhere with a DRM-free PDF
copy of this book.

[*+ Use your favorite e-reader to learn using a
DRM-free ePub version of this book.

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,
then search for this book by name. Ensure it’s the

correct edition.

Note: Keep your purchase invoice ready before you start.

UNLOCK NOW
]

Version control basics

Concept analogy: version control as a recipe book

Imagine you’ve perfected a lasagna recipe over weeks of experimentation. Each
\/V tweak you make—extra cheese, less salt, a new baking time—is tracked in a note-

book. Later, you decide which version was the best and share that one with friends.

That’s essentially what Git does for your code: it tracks every change, lets you revisit

earlier versions, and helps you collaborate without confusion.

https://packtpub.com/unlock

20 Introduction to Version Control with Git

Version control is a fundamental practice that significantly impacts the efficiency, reliability, and

collaboration within software projects. Here are three key aspects highlighting its importance:

e Tracking changes and history: Version Control Systems (VCSs) allow developers to
track changes made to their codebase over time. Each modification, addition, or deletion

is recorded as a commit, preserving a detailed history.

e Effective collaboration: In collaborative environments, version control enables seamless

teamwork:

e Branching and merging: Developers can work on separate branches, experiment-
ing with new features or bug fixes. Merging these branches ensures a cohesive

codebase.

e Conflictresolution: When multiple contributors modify the same file, a VCS helps

resolve conflicts systematically.
e Maintaining code quality: Version control promotes best practices and quality assurance:

e Code refactoring: Developers can refactor code confidently, knowing they can

revert if necessary.

e Continuous Integration (CI): CI pipelines rely on version control to automate

testing, ensuring code quality.

So, how are these aspects beneficial? Let us discuss the benefits.

Benefits of version control

Here are a few benefits of using version control:

e Granular history: Developers can review the evolution of a project, pinpointing when

specific features were added, or bugs were introduced.

e Accountability: Commits are associated with authors, promoting accountability and

transparency.
¢ Rollbacks and reverts: If a mistake occurs, reverting to a previous state is straightforward.

e Parallel development: Teams can work simultaneously without interfering with each

other’s changes.

e Codereviews: VCS facilitates code reviews by providing a clear diff (difference) between

versions.
e Stability: A well-maintained version-controlled repository ensures stability and reliability.

e Traceability: Issues and bug fixes are linked to specific commits, aiding debugging.

Chapter 1 21

Whatif you don’t use version control? Let us look at some challenges one may encounter without it.

Challenges without version control

When you don’t use version control, here are a few challenges that you might face:

e Manually managing different versions of files can lead to confusion, lost changes, and

accidental overwrites.
e Coordinating changes becomes cumbersome, leading to conflicts and delays.

e Code quality suffers due to a lack of systematic tracking and collaboration.

In summary, version control is indispensable for modern software development, offering ben-
efits such as historical tracking, collaboration support, and code quality maintenance. Without
it, teams face challenges related to coordination, accountability, and code stability. In the next

section, we will explore some examples of version control systems.

Examples of version control systems

Here, we’ll introduce various version control systems and compare their features. We’ll focus
on Git as the industry standard and explain why it’s widely adopted. Several VCS options exist

beyond Git, each with its own features and use cases. Here are a few notable ones:

e Subversion (SVN): Subversion, often abbreviated as SVN, is a centralized VCS. In this
model, users access a master repository via clients, and their local machines hold only
working copies of the project tree. Changes made in a working copy must be committed
to the master repository before propagating to other users. While SVN has been widely
used, Git’s distributed nature has largely overshadowed it.

e Mercurial: Mercurial is another distributed VCS, similar to Git. It offers an alternative
to Git’s complexity while maintaining a decentralized approach. Mercurial emphasizes
simplicity and ease of use, making it a viable choice for smaller projects or teams.

e Team Foundation Version Control (TFVC): This is a centralized version control system
provided by Microsoft. TFVC supports two types of workspaces: server workspaces, where
the server maintains the version history, and local workspaces, where the version history
is maintained on the developer’s machine. Developers can check out code, make changes,
and check in their changes to the server, where they are integrated with the rest of the

codebase.

In the next section, we will discuss why Git has soared so high in popularity and adoption.

22 Introduction to Version Control with Git

Git's dominance and popularity: why it stands out

Git has become the industry standard for version control due to several factors:

e Decentralization: Git’s distributed model allows developers to work offline, commit
changeslocally, and synchronize with remote repositories later. This flexibility enhances
collaboration and resilience.

e Performance: Git’s speed and efficiency in handling large repositories and complex his-
tories make it a preferred choice for both small and large-scale projects.

¢ Community and ecosystem: Git’s vast community, extensive documentation, and rich
ecosystem of tools (such as GitHub, GitLab, and Bitbucket) contribute to its widespread

adoption.

"Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.”
- https://git-scm.com/

In summary, while other VCS options such as Subversion and Mercurial still have their merits,
Git’s dominance and popularity stem from its decentralized architecture, performance, and robust

community support. Up next, let’s explore Git and its fundamentals.

Overview of Git

Let’s now dive into Git! We’ll cover the basics: what Gitis, how it works, and its core components

(commits, branches, and repositories). This section sets the foundation for the rest of the chapter.

Git's distributed nature

Git (/git/ pronounced like get) is a distributed VCS designed to manage source code and track
changes in software projects in a decentralized manner. Each developer has a complete copy of
the entire repository, including its history. Git allows collaboration, offline work, and efficient

handling of large projects.

In Git, a commit represents a snapshot of the project at a specific pointin time. Developers create
commits to record changes (additions, modifications, or deletions) to files. Each commit has a

unique hash, author information, timestamp, and a reference to its parent commit(s).

https://git-scm.com/

Chapter 1 23

Branching and merging

This is the most outstanding feature that separates it from many other VCS tools. Git encour-
ages branching. Developers create branches to work on specific features or fixes independently.
Branches allow parallel development without affecting the main codebase. Merging then com-
bines changes (commits) from one branch into another (e.g., merging a feature branch into the
main branch). Git’s merge algorithms handle conflicts and ensure a consistent history. For more

information about Git’s differentiator, you can learn more at https://www.git-scm. com/about.

Arepository contains one or more branches. The first one is usually named main or master, and a

branch will contain a copy of the code along with the history of the commits made to that branch.

Understanding the Git concept

Let’s now walk through three real-world Git scenarios to understand how commits, branches,
and timelines work together in practice. Each example builds on how Git tracks changes and

enables collaboration.
When a new Gitrepository (repo) is created, it comes with the first branch (main or master). This

branch is called the default branch. This is Scenario 1.

Scenario 1: Committing changes on the main branch

Every change you make to the code is recorded as a commit that remains forever in the history
of the branch’s timeline. You can revert to any specific previous commit on the timeline and the

code in that branch will take that previous form. So, see this as restoring a backup.

The following diagram shows a Git graph of a repo (My repository), showcasing multiple com-

mits with their timestamps:

My repository

é*é‘ % v))
o & 5 &
& o O s
& ~ Q))
o & 6@\ &
@'@ o@ o C::)‘{\
main @

Figure 1.4: A diagram of a Git graph showing a timeline of commits (changes) in the main
branch of the repository

https://www.git-scm.com/about

24 Introduction to Version Control with Git

Scenario 2: Creating a feature branch

Say [want to make some major changes to the code without affecting the last commit I made
(commit 3). If I would like to develop an entirely new feature for a mobile app, I would create
a copy of the branch at its latest timestamp and begin my fresh work from there. All additional
commits [make would be in my new feature branch. The following diagram illustrates how a

new branch continues with the history from its source branch:

My repository

bé’\
& 2 & a
X 3 & &
\‘S‘f’ QQQS"\ %Qrb .-«f{-‘@
& & & &
& L e iy
& & > &
& & & &
& & & &
main @
feature A branch & @
¢ % ©
2 ¥ s &
&x & & &
s &£ § &
N &
New- bronci redoing
history of sowrce
bronciv

Figure 1.5: Anew branch (feature A) is created from main to begin another body of changes

This way, I can test my feature changes in a controlled environment and add more commits
without impacting the working code in the main branch. I can choose to roll out my mobile app
with the test features to select people who will test it with me, while everyone else will be using

the code in the main branch in production.

Chapter 1 25

Scenario 3: Fixing a bug while developing a feature

While you are still in the process of developing a new feature in the feature A branch, you received
some not-so-great news about a bug identified in production that needs to be fixed. You can fix
the bug in the main branch while keeping your new development work intact (you could create
another fix branch from the commit 3 node as well, but this is just an example). This can be seen in the

following diagram:

My repository

2 D
‘\\‘} @6‘ é‘“ & pn
&] O S &
o S B R »
& & S) @
& s [) A
G § $
\(‘{- o§ 006\ oéc 006\
main @
feature A branch @,gé @
£ £ o el el
2. > > & Y &
& & S & &
& & &
\006‘ c_lo@ & 006\ o°<:§\ 009
&
Chranges covs condiinie
e parallel branclies

Figure 1.6: Parallel changes - fixing bugs while developing new features

In the preceding diagram, you can see how you can make multiple commits across the timeline.
Commit numbers were only used for brevity; timestamps tell the positions of the commits across
the timeline. In addition, every commit is assigned a unique identifier called the commit SHA
(or hash). This is a 40-character hexadecimal value that represents the commit’s content and
metadata. Itis derived from the commit’s content (code changes) and other information (author,

timestamp). Often, you’ll see a shorter version (usually the first seven characters) of the full SHA.

Example of a full commit SHA

2 42e2e5a19d49de268cd1fda3587788dadace418a

W

42e2e5ais the shorthand for the same commit.

26 Introduction to Version Control with Git

Merging

Now you’re done with the development of the new feature(s) and you would like to make this
available for full production use. You can merge the feature branch back to the main branch. With
this, all code from inception, including the bug fixes and feature changes, will become one whole

coherent codebase in the main branch.

My repository
&
a =) X
& & c{§ ‘:@6‘ »
& & S & 3
& S O S &
& & & & & 4
& & (59 (55:\ qp@ Q&‘q’
main @ O
feature A branch 65"@ [
&] @ o]
Faogh & & & & m e
K& 85 &5 5 erg
@

Figure 1.7: Changes can be consolidated by merging branches

When you merge a branch with another branch, a merge commitis created, marking the snapshot

of the amalgamation.

Cloning

If two or more developers need to make parallel changes to My repository, the repo will have to
be stored in a central place (server) while the developers interact independently with the server
from their local machine. The way Git ensures this is done without creating overreliance on the
server is another unique feature that sets Git apart. Git does this by cloning the repo from the

remote server.

When you clone a Git repository, you're creating a local copy of an entire project (including all its
files, history, and branches) from a remote server (such as GitHub, BitBucket, or GitLab). This

allows you to work on the code locally, make changes, and contribute back to the project.

Chapter 1

27

The difference between Git and GitHub

\/V Gitis the local technology on your machine for creating and interacting with repos-

itories, while GitHub is the remote server where Git repos can be stored centrally to

aid collaboration between two or more people on the codebase.

-

My repo

main

Branch 2

clone

clone

Dev 1 (local machine)

~
=
3
]
o

main

Branch 2

J

Dev 2 (local machine)

™ -
=
=
| I
o
=]

main

Branch 2

Branch 3

J

£

\

Dev 1 and
Dev 2
working
branches

Figure 1.8: Two developers working on different variations of a repo cloned from the remote

server

In the preceding diagram, Dev 1 and Dev 2 each cloned a copy of the repo from the central loca-

tion (remote), which is the origin where the codebase is stored. In addition to this, Dev 1 started

working on the code in Branch 2 as their working branch, whereas, Dev 2 has created a new

branch (from either main or Branch 2) called Branch 3 as their working branch.

28 Introduction to Version Control with Git

Git jargon and commands

Before diving into the world of Git, it’s important to familiarize yourself with the terminology
and commands used in this version control system. In the following section, we’ll introduce you
to some common Git jargon and commands that you’ll encounter as you work with repositories,
branches, and commits. Understanding these terms and commands will help you navigate Git

with confidence and ease.

As it is with every command in the Command Line Interface (CLI), every Git command starts
with the word or verb git, then a space and the command. Here is a list of 15 commonly used Git

commands and their functions:

Git Command Function

1 git init Initializes a new Git repository

2 | 8it clone Creates a copy of a remote repository on the local machine

3 git status Displays the status of the working directory, including any changes
made

4 git add Adds changes to the staging area, in preparation for a commit

5 | git commit Records changes to the repository, creating a new commit

6 | git branch Lists all branches in the repository and shows the current branch

7 git checkout Switches between branches or restores files in the working directory

8 | git merge Merges changes from one branch into another

9 | git pull Fetches changes from a remote repository and merges them into the
current branch

10 | git push Pushes changes to a remote repository

1 | 8it log Shows the commit history of the current branch

12 | git diff Shows the differences between the working directory and the most
recent commit

13 | git remote Manages remote repositories

14 | git fetch Fetches changes from a remote repository but does not merge them

15 | git stash Temporarily saves changes in the working directory that are not
ready to be committed

Table 1.1: List of 15 commonly used Git commands

Beyond your source files, Git repositories may also contain some additional files called configu-

ration files. Let’s examine these in detail.

Chapter 1 29

Git configuration files

Remember that a commit is a snapshot of the project at a timestamp? A repository may contain
multiple files — source code, configuration files, test suites, libraries, and documentation. In addi-
tion, a repository contains Git configuration files that help Git understand how to interpret your
repository and the files in it. Many of these configuration files, though present in the directory

(folder) the repo is stored in, are hidden from view.

The following table is a list of some examples of Git configuration files and their purposes:

Git Configuration File Purpose
.gitignore Specifies intentionally untracked files to ignore
-gitattributes Defines attributes per path
-gitmodules Defines the mapping between the project’s submodules and their
URLs

Config Contains repository-specific configuration options

HEAD Points to the currently checked-out branch

Description Contains a short description of the repository

Table 1.2: List of Git configuration files present in a repo

Now, let’s get practical! In the next section, we will go through a lab exercise in our first venture

into using Git.

Certification tip

N\ ! d
- @— Expect alot of questions on Git commands and using configuration files. For example,
4 N
= you may be asked about scenarios where you need to use the .gitignore file or a

use case where a file is not to be tracked in the repo.

Lab 1: Setting up Git
In this section, you will learn how to install Git, configure your user information (name and email),

and set up your first repository. We’ll guide you through the initial setup process.

The steps in this lab exercise require a computer. Your computer can be Windows, Linux, or
macOS. You will be running these steps in the terminal/CLI. You will not be able to do this on a

phone or tablet.

30 Introduction to Version Control with Git

Video guides

\/V If you prefer to follow a step-by-step video guide as you take this lab exercise, visit
Chapter 1, Lab I: Setting Up Git video from the book’s video playlistlink here (https://
www . youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmagAcbBxJ39w).

Installing Git

Launch your terminal in macOS or Linux, or Command Prompt or PowerShell in Windows:

1. First, checkif Gitis already installed on your system by opening a terminal or command

prompt and typing the following:

git -version

If Gitis installed, you will see the installed version number.

2. If Gitis not installed, you can download it from the official website (https://git-scm.

com/downloads) and follow the installation instructions for your operating system.

Configuring user identity
Every commitin a Gitrepo is registered against the “committer” and timestamped for record-keep-

ing purposes.

Before you can commit changes to any Git repo, the Git system needs to save your display name
as well as your email address on the system you are using. This is only needed the first time you
install Git.

Follow these steps to register your user identity for the first time:

1. After installing Git, you need to configure your user identity by setting your name and

email address.

2. Inthe terminal or command prompt, type the following:

git config --global user.name "Your Name"

This command sets the name that will be associated with your Git commits globally on
your system. This means that every time you make a commit, Git will use Your Name as

the author name.

https://git-scm.com/downloads
https://git-scm.com/downloads
https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w
https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w

Chapter 1 31

3. Then type the following:

git config --global user.email your_email@example.com

This sets the email address that will be associated with your Git commits globally on your
system. This means that every time you make a commit, Git will use this email address

as the author email.

Creating a local repository

Before you create a local repository, I would recommend you set aside a separate directory des-
ignated as a parent directory for storing your local Git repos. Every Git repo resides in a separate

directory. You may, for example, want to create the following structure:
Name Date Modifie
v @@ all_my_repos Today at 10:

> @ app2 Today at 10:
> [app Today at 10:

Figure 1.9: Asample directory structure with a parent directory for storing local repos

Let’s get started, with the following steps:

1. Skip this step if you already have a desired location. Otherwise, type the following:

mkdir all my repos && cd all_my repos

mkdir appl && cd appl

2. To create a new local repository, navigate to the desired location on your computer using
the terminal or command prompt. If you are new to the CLI, you can read this article
(https://opensource.com/article/21/8/1linux-change-directories) on how tonav-

igate to a directory in the terminal. Type the following:

This will initialize a new repository and create a new .git directory containing all the

necessary files for version control.

Your repo has now been initialized. Any changes you make to that directory —for example,

creating a file, modifying a file, adding a file, deleting a file, and so on — will be tracked.

https://opensource.com/article/21/8/linux-change-directories

32 Introduction to Version Control with Git

3. Check the status of Git by typing the following:

git status

You should get the following result:

On branch main

No commits yet

Figure 1.10: Output stating no commits detected
This indicates that your working branch is main and no changes or commits have been detected

yetin this repo.

Creating your first application source code

We will now create a simple file with basic code or script to simulate what it is like to write code.
Follow these steps:

1. Inyour initialized directory, create a new file (you can also move an existing file into it) by

typing the following:

echo "alert("Hello world")" >> my_new_file.js

2. Now check the status of your repo again by typing git status. You should get the fol-

lowing result:

Here, a new file has been detected but it has not been tracked for
versioning yet.

3. Toinclude the new file in version control so that subsequent changes to it will be tracked,

type the following:

git add "<file>"

Chapter 1 33

Where <file> is the filename of the new file you added. Then type git status again. You
should get the following result:

On branch main
No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

Figure 1.11: Output for change detected

The change in this file has now been recognized and the change detected is that it is a new

file added. Itis now in the staging area, meaning that it is ready for a commit.

4. To commit the changes in your staging area (you can stage multiple files and commit all
at once), you will use the git commit command followed by the -m flag and then your

message in quotes. Type the following:

git commit -m "Adds my first source code file"

Congratulations! You have completed your first version control exercise. Your source code is in

safe hands.

In the next section, we will examine some challenges of Git and common pitfalls to avoid.

Some common challenges

Git is quite versatile, but there are certain file extensions and scenarios that can cause issues or

require special handling:

e Binary files: Git treats files with non-ASCII characters or very long lines as binary. If a
file contains UTF-16 encoding or other non-ASCII content, Git may consider it binary. To

explicitly define how Gitinterprets files, use a .gitattributes file.

¢ Unsupported protocols: Git supports various protocols (HTTP, SSH, etc.) for remote re-
positories. However, some older versions of Git Extensions had issues with SSH. Ensure

you’re using a recent version and the correct protocol.

34 Introduction to Version Control with Git

e SHA-1hashissues: Sometimes Git may struggle with specific files due to their content. If
you encounter problems, try locating the unique SHA-1 hash for the file using git hash-

object -w filename.

e Large files and large repos: Git is designed to handle source code and small text files
efficiently, but it can struggle with large binary files or very large repositories. Here are

some common issues:

e Performance: Large files can slow down operations such as cloning, fetching,
and pushing.
e Storage: Large files increase the size of the repository, which can be problematic

for storage and bandwidth.

e History: Every version of a file is stored in the repository’s history, so large files

can quickly bloat the repository size.

To manage large files, you can use tools such as Git Large File Storage (LFS), which stores large
files outside the main repository and replaces them with lightweight references. This helps keep

the repository size manageable and improves performance.

Remember, Git’s flexibility allows you to adapt to different scenarios, but understanding these

nuances can help you work more effectively!

Summary

In this chapter, we delved into the essentials of Git and how it differs from GitHub, providing a
comprehensive introduction to version control and its significance in software development. We
began by outlining the key aspects of version control, such as tracking changes, effective collab-

oration, and maintaining code quality.

We also discussed the benefits of version control, including granular history, accountability, roll-
backs, parallel development, code reviews, stability, and traceability. We highlighted the chal-
lenges faced without version control, emphasizing the potential for confusion, lost changes, and

decreased code quality.

Next, we introduced various version control systems, focusing on Git as the industry standard, and
explaining Git’s decentralized nature, performance, and the strong community and ecosystem
that support it. Afterward, we looked at an overview of Git’s core components, such as commits,
branches, and repositories, and described how Git’s branching and merging capabilities facilitate

parallel development and conflict resolution.

Chapter 1 35

Throughout the chapter were practical examples and diagrams to illustrate key concepts, such as

creating new branches, fixing bugs, and merging changes. We also covered essential Git commands

and their functions, helping you become familiar with the terminology and commands used in Git.

Let’s have a quick test of your knowledge.

Test your knowledge

1.

Git and GitHub can be used interchangeably

a. True

b. False

Which of the following is not a version control system?

a. Git

b. GitHub
c. SVN

d. TFVC

You made some changes to Python code in your repository. You need to ensure that these
changes have been added to version control. Which two commands do you need to run

to ensure your changes have been recorded?
a. git --versionandgit record
b. git statusandgit add

c. git statusandgit commit

d. git addandgit commit

Useful links

Branching and Merging: https://git-scm.com/about/branching-and-
merging#branching-and-merging
How to open and close directories in the Linux terminal: https://opensource.com/

article/21/8/1linux-change-directories

https://shorturl.at/tHv17
https://shorturl.at/tHv17
https://opensource.com/article/21/8/linux-change-directories
https://opensource.com/article/21/8/linux-change-directories

36

Introduction to Version Control with Git

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

=

https://packtpub.com/unlock

Navigating the GitHub Interface

Welcome to Chapter 2, Navigating the GitHub Interface. Get ready to dive into the world of GitHub
and discover its many features. In Chapter 1, we only discussed Git, which is the universal system
thatmost VCS platforms use, including GitHub. We will now discuss GitHub proper. In this chapter,
you will learn how to navigate the platform’s interface — an essential skill tested in the GitHub
Foundations certification exam. We’ll explore GitHub’s offerings, its core features, and the ac-

count types you’ll need to know about for both personal and team collaboration. Let’s get started!
We will cover the following main topics:

e GitHub overview and offerings

e GitHub account types

e Lab 2.1: Familiarity with the GitHub interface
e Introduction to GitHub product features

e Other GitHub tools and features

Technical requirements

You will need a GitHub account for the lab exercises in this chapter. You can get a GitHub account
for free. To create one, use the documentation on GitHub (https://docs.github.com/en/get-
started/start-your-journey/creating-an-account-on-github) or follow the Chapter 2, Lab
2: Signing up for a Github account video, from the book’s video playlistlink (https://www.youtube.
com/playlist?list=PLuX8xLieCtTP3-AsobdFLmagAcbBxJ39w).

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w
https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w

38 Navigating the GitHub Interface

GitHub overview and offerings

GitHub is a powerful platform that has revolutionized the way developers work. Over 100 million
developers are on GitHub, by far the largest developer ecosystem I know of. It has made it easier for
developers to collaborate, share code, and manage projects. With its intuitive interface and robust
features, GitHub has become an essential tool for developers of all skill levels. In this chapter, we

will explore the many features of GitHub and how you can use them to improve your workflow.

What is GitHub?

GitHub is a hosting platform for developers to store and manage Git repositories (source code)
and collaborate on software development and software releases, providing them with multiple
interfaces and capabilities to work together. It is the library/bookshelf that can help you store
many cookbooks for different recipes, not just lasagna. GitHub only supports the Git version
control system; you cannot store an SVN repository, for example. GitHub is widely known to be
an open source platform, but also provides significant support for private use for individuals and

enterprise-grade use for businesses.

GitHub is available to be deployed as a cloud service on GitHub.com (Software-as-a-Service

(SaaS)) managed by GitHub or as a self-hosted server (on-premises or cloud).

Differences between Git and GitHub

In comparison to Git, GitHub adds far greater advantages:

¢ Redundancy eliminates a single point of failure: Since Git is locally installed on the
machine, your Git repo is only as safe and secure as your laptop or desktop. Damage to
it will mean you may lose all your source code. GitHub mitigates single points of failure
(SPOFs) associated with Git by providing a distributed, web-based platform for hosting
Git repositories. Unlike Git, which operates locally and relies on individual installations,
GitHub centralizes repository hosting, user management, and collaboration features. By
hosting repositories on GitHub, developers benefit from redundancy, robust infrastruc-
ture, and built-in user management, reducing the risk of SPOFs that could disrupt code
sharing and version control.

e Collaboration and real-time edits: GitHub is a platform that hosts code repositories
both in the cloud and on-premises (on-prem). It makes it easier for multiple developers
to work on the same project simultaneously, seeing each other’s edits in real time. This

collaborative environment fosters teamwork and efficient development.

GitHub.com

Chapter 2

39

e Projectorganization and management: In addition to version control, GitHub includes

features for project organization and management. You can create issues, track tasks,

manage milestones, and collaborate with team members. It provides a holistic solution

for both code hosting and project management.

These are core differences. Now let us look at the other general differences to provide additional

context.

Additional context

Here are some contextual differences between Git and GitHub:

Aspect Git GitHub
. . Web-based Git repository hosting
Definition Software for version control .
service
Tool Type Command-line tool Graphical user interface (GUI)
Installation Local (installed on your system) Hosted on the web
Maintained By Linux Foundation GitHub (Microsoft)
Focus Version control and code sharing | Centralized source code hosting
Host Git repositories, collaborate
. on building and releasing software
Purpose Manage source code history . .
(testing, CI/CD, security are all
natively embedded)
Release Year 2005 2008
User Management No built-in feature Built-in user management
Licensing Open source Free-tier and pay-for-use tiers
) Minimal external tool Active marketplace for tool
Tool Integration . . .
configuration integration
Desktop Interface Git GUI (for Git) GitHub Desktop (for GitHub)
L. R CVS, Azure DevOps Server, GitLab, Bitbucket, AWS Code
Similar Technologies . A
Subversion Commit, etc.
[]
git |) GitHub

Table 2.1: Differences between Git and GitHub

Remember that Gitis the underlying version control technology, while GitHub provides a platform

for hosting Git repositories and adds additional features.

40 Navigating the GitHub Interface

Beyond just developers

While we generally refer to users of GitHub as developers, we broadly mean all writers of code,
that is, anyone who writes code, scripts, or configurations, or who writes other software assets
as code — documentation, design, tests, infrastructure, architecture, and so on. The social col-
laborative features of GitHub have aided this expansion, bringing all software professionals and

practitioners into one inclusive ecosystem.

In fact, since the advent of Generative AI and GitHub Copilot, there has been an exponential

growth in the number of other professions writing code on GitHub.

In the next section, we will examine the core functionalities of GitHub.

Core functionalities

GitHub operates in about five groups of core functionalities:

Collaboration

GitHub focuses on collaboration at its core. It provides a series of product features, such as repos,
issues, pull requests, merge queues, projects, and discussions, to foster teamwork among contrib-
utors by reducing approval times, aiding pair programming, reducing friction when combining
work, introducing code reviews conducted by your peers or automation bots, and tracking and

managing work related to feature development and bugs.

Productivity

GitHub is feature-rich in user-friendly tools. It encourages automation, reduces onboarding and
setup time, and introduces efficiency into how you build and release software. Tools and fea-
tures such as CI/CD with GitHub Actions, Codespaces, and Copilot help developers to be more
productive and efficient. GitHub prides itself on the principle of Everything as Code (EaC) — a
DevOps practice of managing all stages of the software development lifecycle —planning, build-
ing, delivery, and so on — by defining and storing them using code and version control systems.
These may include infrastructure, database schema, test suites, and pipelines stored alongside
the application source code itself. Essentially, it extends the application development approach to
other components of IT, ensuring best practices are consistently followed with minimal manual
effort. By treating all components of a system as code, EaC enables repeatability and scalability
and reduces the risk of human error. Examples include Infrastructure as Code (IaC), Configura-
tion as Code, GitOps, and Kubernetes, which allow teams to define and control various aspects
of software deployment and management using code-based configurations. This principle aids

automation and increases productivity levels.

Chapter 2 41

Security

Throughout the software development lifecycle (SDLC) on GitHub, you will find at different
stages various security features embedded natively into your work. This includes while develop-
ing in your IDE or on GitHub.com U], during code merges and code reviews, in deployment runs,
in storage for packages and artifacts, as well as various means to protect your code at rest, your

business’s vital intellectual property, and user identities.

Scale

GitHub is home to developers. You will find millions of apps by individuals, apps for mini school
projects, small to large-scale software by start-up businesses, and even enterprise-grade globally
used software by long-established companies, all on GitHub. This means your software product(s)
can grow with you without the concern of moving to another platform. Backed by Microsoft,

GitHub (cloud) expands to the scale your codebase requires.

Al and automation
Finally, but most importantly, GitHub is powered by Al. GitHub Copilot, powered by Ope-

nAl, Claude and other models, is by far the front-runner of code assistant tools (https://
stackoverflow.blog/2024/05/29/developers-get-by-with-a-1little-help-from-ai-stack-

overflow-knows-code-assistant-pulse-survey-results/) that leverage the capabilities of
Generative Al (GenAl) in software development. GitHub enhances the core pillars mentioned
above with Al For example, you can learn to write code or write code faster with better quality,
enhance pull requests and issues, automate security checks, and fix vulnerabilities faster than

you naturally would without the help of AL

Understanding the open source concept

The open source concept refers to a type of software development model where the source code
is made available to the public. This means anyone is allowed to view, modify, and distribute the
code (sometimes with a defined caveat). This approach promotes community-driven development,
accepting suggestions for improvement and aiding collaboration and transparency. Open source
software is often developed in a collaborative manner, extending borders beyond your locality,

with contributions from developers around the world.

For a deep dive into open source and how you might contribute to open source projects, please

read Chapter 11, Contributing to Open Source Projects.

https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/
https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/
https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/

42 Navigating the GitHub Interface

GitHub is the largest code hosting and collaboration platform and is widely regarded as the
most popular platform for open source development. There are millions of public repositories
on GitHub. These are repositories where you can access their source code, even without a GitHub
account. However, you will need a GitHub account if you want to contribute to them. Non-public

repositories can be either private or internal. Therefore, there are three repo types on GitHub:

Repo Type Description

Public These are accessible to anyone on the internet, allowing anyone to view,

clone, and contribute to the code.

Internal Available only to members of an organization, these repos are used
for projects that need to be shared within a company but not with the

public.

Private These are restricted to the owner, and specific users or teams who are

granted access, ensuring that only authorized individuals can access

and contribute to the code.

Table 2.2: List of GitHub repo types

The following diagram illustrates the repository types and how restrictions tighten as you go to

the right.

Everyone Only you

- - Level of restriction - >

Figure 2.1: GitHub repo types and their access levels

Chapter 2 43

Available plans and offerings

GitHub has different plans to suit the various needs of individuals, start-ups, and established

businesses. Now let us examine available plans and prices.

Note

\E/‘ Features and prices offered in these plans were accurate at the time of writing this

book. Expect some changes in what is now obtainable.

GitHub Free

GitHub’s Free plan is designed to cater to individuals and organizations looking for a no-cost
option to manage their code repositories. With the Free plan, the number of collaborators and
the number of public repositories that users can work with are unlimited, plus, it includes a full
feature set. Additionally, users can manage unlimited private repositories with a limited feature
set. This plan is particularly suitable for open source projects or individual developers starting

out, as it provides essential version control features and collaborative tools without any charge.

The Free plan also includes some valuable features for private repositories, such as 500 MB of
GitHub Packages storage and 2,000 minutes per month of GitHub Actions, which can be used
for continuous integration/continuous deployment (CI/CD) purposes. For public repositories,
these features are available without any limits. Moreover, the plan offers community support,
automatic security vulnerability updates, and deployment protection rules for public repositories.
It’s arobust platform for developers to share their work with the community, contribute to other

projects, and collaborate on code development.

GitHub Pro

GitHub Pro is a step up from the free GitHub plan, designed for developers who need more ad-
vanced tools and insights for their private repositories. With GitHub Pro, users get 3,000 GitHub
Actions minutes per month, 2 GB of GitHub Packages storage, and 180 GitHub Codespaces core
hours per month. Additionally, they receive 20 GB of GitHub Codespaces storage and GitHub
Support via email. This planisideal for individuals who want to maximize their coding experience

with enhanced security, better insights, and more flexibility.

The Pro plan also includes advanced features such as required pull request reviewers, protected
branches, and code owners for better management of code reviews and collaborations. Users can
also benefit from auto-linked references, GitHub Pages, and wikis for comprehensive documen-
tation and insights. These features make GitHub Pro a powerful tool for developers looking to

streamline their workflow and collaborate more effectively on private projects.

44 Navigating the GitHub Interface

GitHub Team

The GitHub Team plan is tailored for organizations and teams that require advanced collaboration
features. Priced at $4 USD per user/month (as of the time of writing this chapter), this plan includes
everything from the Free plan, plus additional tools and insights for private repositories. Users
get 3,000 GitHub Actions minutes per month and 2 GB of GitHub Packages storage. It’s ideal for
growing teams that need more than the basics, offering sophisticated security and administrative

features to manage member access and protect data across multiple projects.

Moreover, the Team plan provides access to features such as GitHub Codespaces, team review
requests, code owners, protected branches, multi-reviewers, and draft pull requests. These features
enhance the code review process and project management, making it easier for teams to collab-
orate efficiently. Organization owners can also choose to enable or disable GitHub Codespaces
for their private repositories and pay for the usage of members and collaborators, giving them

flexibility and control over their development environment.

GitHub Enterprise

GitHub Enterprise is designed for businesses that need to support their entire software devel-
opment lifecycle. It is the most comprehensive of all plans offered by GitHub. It includes all the
features of the Free and Team plans, plus additional features such as SAML and Single Sign-On
(SSO) authentication, Enterprise-Managed Users which enables bringing in your own identity
provider, internal repositories, and free tier of usage-based products such as GitHub Actions and
Codespaces. In addition to these, businesses get a single place to manage their billing, configure
settings, enforce policies, and audit access centrally. It also offers the option to add GitHub Ad-

vanced Security and GitHub Premium Support, which are paid offerings.

GitHub Enterprise Cloud is a deployment option within GitHub Enterprise that adds advanced
features to GitHub. comfor large businesses and teams. It includes SAML authentication, additional
GitHub Actions minutes, restricted email notifications to verified domains, privately published
GitHub Pages sites, managed user accounts, and repository rulesets. An enterprise account in
GitHub Enterprise Cloud gives administrators a central point for managing multiple organizations,

providing a seamless experience with compliance reports and advanced management options.

GitHub.com

Chapter 2 45

Comparatively, GitHub Enterprise Server is the self-hosted version that allows organizations to
run their own GitHub instance, either on-premises or on a public cloud service. This option gives
organizations greater control, scalability, customization capabilities, and dedicated support. It
caters to enterprises seeking enhanced security, compliance, and the flexibility to tailor GitHub
to their specific needs. GitHub Enterprise Server administrators can create accounts for users and
authenticate using the built-in system or an external identity provider. Administrators can also
enable GitHub Connect to benefit from features that rely on GitHub.com, such as Dependabot

alerts and actions hosted on GitHub.com.

Certification tip

\, ! d
/@ You may be asked to select the odd one out of a list of GitHub plans — for example,

one incorrect option might be introduced to the list of options.

GitHub account types

GitHub offers three types of accounts: Individual (User), Organization, and Enterprise. Each account
type serves different needs, from individual developers to large enterprises, offering a range of
tools and features to support collaboration, security, and management of software development

projects.

Individual

An individual or user account on GitHub is a personal account that represents a single user. It’s
your identity on GitHub, with a unique username and profile. This account type can own resources
such as repositories, packages, and projects. Actions taken on GitHub, such as creating issues or
reviewing pull requests, are attributed to your individual account. Individual accounts can use
either GitHub Free or GitHub Pro. With GitHub Free, you can own an unlimited number of public
and private repositories, but private repositories have a limited feature set. Upgrading to GitHub

Pro provides a full feature set for private repositories.

46 Navigating the GitHub Interface

They are ideal for developers who want to host and manage their own repositories, collaborate
on open source projects, or contribute to other developers’ projects. Repositories owned by indi-

vidual accounts are sometimes called user-scoped repos:

Individual Account

Repo 1

User-scoped
Repo 2 vepositories
Repo 3

Figure 2.2: An individual account can own multiple user-scoped repositories

One more important thing: an Individual account can also use GitHub Enterprise Cloud, albeit with
an additional layer of enterprise security using SAML Single Sign-On authentication. Here, the
GitHub individual account (personal) is linked with an external Identity Provider (IdP), thereby

making it two conjoined identities for authentication.

Organization

Organization accounts are designed for businesses and teams. They provide a shared space for
collaboration, allowing multiple developers to work on the same repositories and manage access
to code and project management features. It’s a container for shared work, giving the work a
unique name and brand. Organization accounts can own resources such as repositories and pack-
ages, but you cannot sign into an organization directly. Instead, you collaborate on shared projects
by joining the same organization account with your individual account. Organization accounts
offer sophisticated security and administrative features to manage access to the organization’s
resources. Organization accounts are available in both free and paid plans, with the latter offering

additional features and support for larger teams.

Chapter 2 47

Enterprise

Enterprise accounts are designed for large businesses and organizations. They provide an enter-
prise account experience, advanced security and compliance features, and additional adminis-
trative tools for managing large teams and complex projects. Enterprise accounts are available
only as a paid plan and include all the features of the Free and Team plans, with pricing based
on the number of users and the level of support required. With enterprise accounts, you have

a single place to manage billing and settings, enforce policies, and audit access across multiple

Repo 1 Repo 2 Repo 3

organizations:
car be a
\/mjﬂR
: E
Enterprise Account ! | Organization Account | Individual Account
1 1
i :
Organizaton 1 i i
1 1
i Repo 1 : Repo 1
1 1
Repo 1 Repo 2 Repo 3 i :
1 [
| Repo 2 i Repo 2
Organization 2 i i
1 [}
1 [}
| s
1 Repo 3 i Repo 3
1
1
1
1
i
1
1
i
1
1

(

Gﬂbfﬁfrﬁ

member af

Figure 2.3: Relationships between individual, organization, and enterprise accounts

48 Navigating the GitHub Interface

In the preceding diagram, the group on the far right shows an individual account with multiple
repositories (user-scoped). These repositories belong to your identity. The group in the middle
is an organization containing multiple repositories. Although these are organization-owned
repositories, you will need an individual account to contribute to them. On the far left is an En-
terprise account containing multiple organizations, which in turn contain multiple repositories

(organization-scoped):

houses houses

Enterprise e Organization e Repository

Figure 2.4: An Enterprise account contains multiple orgs, which in turn contain multiple repos

An Enterprise account cannot own a repository; only an individual or organization can:

houses
(1:N) Repository

Figure 2.5: An Individual account can house multiple repos

Each organization can be independently managed while still inheriting all enterprise-defined rules,

policies, and behaviors. An organization can be a member of an enterprise or stand on its own.

Let’s get hands-on a little bit! Up next, we will delve into a lab exercise that will help us get used
to the GitHub interface.

Lab 2.1: Familiarity with the GitHub interface

In this lab, we will walk through the basics of the GitHub interface and get exposed to the terminol-
ogies used and the menus. By the end of this lab, you will be able to find your way around GitHub.

Exploring open source repos

Note

&

You do not need a GitHub account for this.

Chapter 2 49

Let us explore some open source repos in the following steps:

1. Visithttps://github.com/explore. Thisis where you can explore the latest about GitHub,
such as developer and open source news, the latest videos, trending developers, trending
repos, and popular topics.

2. Click on Trending. This will show you a list of the current most popular open source

repos. You can filter by spoken language, programming/scripting language, and period:

Trending

See what the GitHub community is most excited about this month.

Repositories Developers Spoken Language: English = Language: Any = Date range: This month =
[sindresorhus [awesome D sponsor | ¥ Star
t all kinds of interasti 10

¥ 8,218 stars this manth

0 sponsor W star

1F 5,573 stars this manth

=]

®co 5077 Y503 Bultby § 4 .1, 3 17 687 stars this manth

trufflesecurity / trufflehog W Star

d, ver 1 analyze leaked ¢

Figure 2.6: Example of trending repositories on GitHub
On each row of records, you will find important information about each repo:

e Therepository name: Thisis usually in the format {owner}/{repo_name}, where
owner is the owner of the repo, that is, either individual or organization; and repo_

name is the name of the repository.
e Stars: The number of stars a repository has is the number of people (developers)

that have bookmarked the repo. A repo earns a star every time someone stars that

repo (adds it to their bookmarks).

e Language: This is the language the source code in the repo is mostly written in.
This is derived from the language with most lines of code across all the files in
the repo. Remember, a repo can have multiple languages co-existing in different

filesin it. This may be a programming, scripting, markup, or markdown language.

https://github.com/explore

50 Navigating the GitHub Interface

e Builtby: Thisis alist of the top contributors to the repo’s contents. This is usually

represented by their avatars. Clicking on the avatar will take you to the profile
page of the contributor.

Here’s a close-up of a repo showing the vital stats:

g freeCodeCamp / freeCodeCamp

freeCodeCamp.org's open-source codebase and curriculum. Learn to code for free.

(.T';;peS-;ripl 7 398,349 ¥ 35692 Builtby a &n o. o)

@ trufflesecurity / trufflehog

Find, verify, and analyze leaked credentials
Figure 2.7: Summarized info of a repo showing vital stats

3. Visit https://github.com/freeCodeCamp/freeCodeCamp. This will take you to the
freeCodeCamp repository, one of the most widely used open source repos. Scroll down

to read the README section. Then, explore the source code by browsing through the
directories you see there.

Note

\/&/ The README section is the landing page of a GitHub repo where you can

find an overview of what the repo contains. Itis crucial documentation you

provide to help visitors and contributors understand the repo.

4. Visithttps://github.com/torvalds/linux. This will take you to the primary open source
repository containing the source code for the Linux kernel, maintained by Linus Torvalds

and the Linux community. Explore the source code by browsing through the directories
you see there.

The preceding steps 3 and 4 are examples of open source repos, millions of which exist on GitHub.
Notice how the word Public is written next to the repository name at the top left? This indicates
that the repo is public. You are free to view the source code, suggest changes, or outrightly con-
tribute to it as the license permits. More information is available about open source licenses in
Chapter 11, Contributing to Open Source Projects.

https://github.com/freeCodeCamp/freeCodeCamp
https://github.com/torvalds/linux

Chapter 2 51

You will also realize that you have been browsing all these repositories and source code without

an account or without signing in. Next, let us sign in with a GitHub individual account and see
the difference.

Exploring the interface

You will need a GitHub account for this exercise:

1. Visit github.comand sign in by clicking on Sign in at the top right. This will take you to
the GitHub Dashboard page, a landing page to help you stay organized and get quick

access to what is important to you.
Note

\/V Signing in to GitHub may require two-factor authentication (2FA) and you
may have set this up during your sign-up process. If you haven’t, be sure to

do that soon. It will help to safeguard your source code and improve security.

The following screenshot is a sample of what your dashboard may look like:

= o Dashboard @, Type | to search O n|a g
w > - N . - Expiare reposiories
sl Join GitHub Education! *
- GitHuh Education apens o callaborative cammunity aager ta drive @ rails | il r
Create your first project = - ’ =
Rty bo start Dulicng? Craate & repossary Ruey an Rek
for a new dea ar bring over an exi: Trsse @iy
rensitany o kiep sontributing 1o i
== i e [R—— %
Free and discounted ! '-
services for teachers L Yo
and students. iy e TR T
| Ejmabiobvodd Iyl btedance | xgnlayer o
[P ——
Explore more <+
Home Snd eacmeck = Finer

Mritroduce yoursall with & prafde READRKE

Rapesitary name *

repasitor

i i aya-Creator REAHE. B m
Public

Figure 2.8: The GitHub dashboard, your default landing page

github.com

52

Navigating the GitHub Interface

2. Inthetop-left corner, click on the hamburger menu to see the options available. This will

display a quick shortcut to various GitHub features. As you continue to use GitHub, the

list in this menu may expand to show additional shortcuts to repos, teams, and more:

) X

() Home

Issues

©

11 Pull requests

i

Projects

O

1) Discussions
Codespaces

Copilot

Explore

B X @B [0

Marketplace

Repositories Q
4 ayo-creator/my-blank-repo
ayo-burger-incorporated/big-mac-c...

4 ayo-creatorfapp1

® 2025 GitHub, Inc.

About Blog Terms Privacy Security Status
Do not share my personal information
Manage Cookies

Join Git}
GitHub Ed
communit
future in t
Fi
S¢
al

Home

Ask Copilot

Figure 2.9: Contents of the GitHub hamburger menu

Chapter 2 53

3. Also,in the top-right corner is a set of useful shortcuts and tools. Hover over each of them

to see what they are:

Note

\@/ The icons you see may depend on what GitHub plan you have subscribed

to or what features are enabled to be accessible to your GitHub account.

Q Type [/]to search &8 |~ + Ol B %

Figure 2.10: Some of the icons available in the top-right toolbox
Let’s examine each one:

1. Search box: this allows you to search for anything across repos, organizations,
and your enterprise.

2. Copilot: this launches the Copilot conversational chat. The all-new GenAl feature

that answers questions from generic GitHub topics to writing actual coding tasks.
Create new...: you can create new items from here.

Issues: This takes you to all the issues across all repositories.

Pull requests: This takes you to all pull requests across all repositories.

Notifications: You can view/manage all your assigned issues and read notifications.

N oo oo w

Profile avatar: You can manage your profile, configure settings, and view shortcuts

to account-related menu items.

Now that you are more familiar with the GitHub interface, let us create our first repo.

54 Navigating the GitHub Interface

Creating your first user-scoped repository

In this exercise, we will create a user-scoped repo, that is, a repository owned by an individual:

1. Ensureyou are signed in to GitHub. At the top right, click on +, then select New repository:

+ - |[e](n](e] @

([_:J New repository)

E+ Import repository

2 New codespace

SUE <> New gist
ing
New organization
pilc)
o [New project

Figure 2.11: Drop-down menu when you click on New... (+)

2. Type a name for the repository — let’s use my-first-repo. GitHub will also suggest a

random name that you can choose to use.

Note

\/‘/ On the left of the repository name is a dropdown showing the owner of
the repo, which defaults to your GitHub username (we also call this your
GitHub handle).

The repository name is unique to the owner; you cannot create another user-scoped re-
pository with the same name to be owned by this individual account.

Optionally, type a meaningful description for the repo.

Select Private. This will ensure your repository is only accessible to you.

Under Initialize this repository with, select Add a README file.

S

Click on Create repository to create your repository using the information you have sup-

plied.

Chapter 2 55

You have now created a new repository. This will now be displayed under the Code tab listing

with your README . md as the only file content. In addition, you will see the content of the README .

md (showing your repo name and description you supplied) displayed on the page.

The extension (.md) of the README file is markdown, which is a file format common for writing

documentation in repositories. We will learn more about markdown in the next chapter.

Great job! You have created your first repository. Let’s now create an organization repository.

Creating your first org-scoped repository

To create a repository owned by an organization, we must first have an organization to create itin:

1.

At the top right, click on +, then select New organization. If you're prompted to select a
plan, select the Free plan and continue to create a free organization.

Type a name for the organization. Like your GitHub username, organization names are
unique across GitHub. Therefore, you cannot create another organization with the same

name, whether within this GitHub personal account or otherwise. No one else can either.
Provide a contact email address.
Under This organization belongs to, select My personal account.

Complete the verification challenge under Verify your account, select I hereby accept
the Terms of Service... after you have read the terms, and click Next. Optionally, you may
select the Get GitHub Copilot Business in this organization add-on at a cost (more about
GitHub Copilot in later chapters).

The next page you see presents you with the option to invite other people to join your new

organization. You can skip this step for now by clicking on Skip this step.

Awesome! You have managed to create your first globally unique organization. Now let’s create

arepository inside this.

1
2.

4.

At the top right, click on +, then select New repository.
Under Owner, now select your newly created organization.

Type a name for the repository — let’s use my-first-repo again. You are allowed to use

the same repository name since it belongs to a different owner.

Repeat steps 3-6 of the user-scoped repository creation we did previously.

Done! You have successfully created an organization-scoped repo.

56 Navigating the GitHub Interface

Let’s compare these two repositories side by side:

1. Duplicate your current browser tab so that you have the landing page of your new orga-
nization-scoped repo displayed on both.

2. Onone of the two tabs, click on your profile avatar in the top right-hand corner and select
Your repositories. This will list all the repositories under your personal account.

3. Select my-first-repo. This should take you to the landing page of your user-scoped repo.
Notice the URL of the two browser tabs. This should look like this:

e Org-scoped: https://github.com/{org-name}/my-first-repo

e User-scoped: https://github.com/{username}/my-first-repo

You now see how it is possible to use the same repository name as long as there are different
owners. It is good practice to take note of the URL when you’re collaborating on code to be sure

you’re working in the right context and repo.

Let’s move on to the exciting part where we talk about all the various product features that make

GitHub a great platform.

Introduction to GitHub product features

Here, we will discuss GitHub products, the main top-level features you will be interacting with

throughout a software development lifecycle.

Repos

Repositories, or repos for short, are the fundamental building blocks of GitHub. They are used to
store and manage source code, documentation, and other project-related files. Repos can be public
or private and can be owned by an individual or an organization. In an organization, there is a
third repository visibility called internal. Public repositories are visible to anyone on the internet,
private repos are visible only to the owners and anyone else given explicit access to them, while
internal repos are visible to anyone within an organization. In addition to files, you will also find
that many other GitHub product features are accessible in a repository, which means they host

both Git-tracked content and other project-level tools and integrations.

Issues and pull requests

Issues are used to track bugs, feature requests, and other project-related tasks. Pull requests,
on the other hand, are used to propose changes to a codebase. They allow developers to review,

discuss, and merge code changes.

https://github.com/{org-name}/my-first-repo
https://github.com/{username}/my-first-repo

Chapter 2 57

Projects

Projects are used to organize and track work on GitHub. They provide a visual way to manage

tasks, issues, and pull requests.

Discussions

Discussions provide a space for developers to have conversations, ask questions, and share ideas.

They are a way to foster community and collaboration on GitHub.

Actions

Actions are used to automate software development workflows. They allow developers to build,

test, and deploy code directly from GitHub.

Copilot

Copilotis an Al-powered coding assistant that integrates directly into code editors and the GitHub
platform, where it helps developers by suggesting code snippets, entire functions, and even com-
plex algorithms in real time based on natural language comments and the context of the code
being written, thereby accelerating development, reducing repetitive tasks, and enhancing pro-

ductivity across a wide range of programming languages and frameworks.

Advanced security

Advanced security provides tools to help developers secure their code. It includes features such

as code scanning, secret scanning, and dependency review.

Packages

Packages provide a way to publish and manage software packages on GitHub. They support

multiple package managers and can be used with public or private repos.

Codespaces

Codespaces is a cloud-based development environment that allows developers to code from any
device with pre-configured, secure environments native to GitHub. It provides instant access to a
fully configured development environment, reducing setup time and ensuring consistency across
different machines. Developers can customize their Codespaces with specific tools, languages,

and configurations, making it easier to collaborate and maintain a consistent workflow.

58 Navigating the GitHub Interface

Certification tip
A You may be presented with a scenario and be asked to choose which GitHub product
A you need to use. For example, a customer raised a bug about your application, and

you would like to analyze the bug to triage it. Where will you find the current bugs

already submitted against your repo?

Important

V4 There s a stark difference between a Gitrepository and a GitHub repository. A GitHub
\Q/‘ repository will contain a Git repo, issues, pull requests, discussions, linked projects,

Actions workflow runs, build packages, as well as other artifacts scoped to a GitHub

repository but not stored in Git.

The following screenshot shows the horizontal menu of GitHub product features available to a
repository. Clicking each one will take you to the related items scoped to that GitHub repository.
Note that some items may be missing in your own horizontal menu (e.g. Discussions) compared
to the following screenshot. This may be due to some features that are turned off by defaultin the

General settings of the GitHub repository or due to the level of permissions you have:

<> Code O Issues 319 11 Pull requests) Discussions () Actions Hj Projects 7 (@) Security 2 |# Insights

Figure 2.12: A cross-section of GitHub products featured as horizontal tabs in a GitHub repo

Let’s look at some other GitHub tools — products that complement the core features above.

Other GitHub tools and features

Now that we have a solid understanding of the GitHub interface and its various features, let’s
delve sideways and look at other GitHub tools that complement how you work on GitHub in your

software development lifecycle.

Chapter 2 59

GitHub Desktop

GitHub Desktop is a thick client (a thick client is a type of software that runs on a user’s com-
puter or device) that simplifies the process of managing Git repositories on your local machine.
It provides a user-friendly interface for performing common Git operations such as cloning re-
positories, creating branches, making commits, and handling pull requests. This way, you do not
have to remember Git commands and syntaxes, as most of the tasks can be performed by clicking
buttons. GitHub Desktop seamlessly integrates with GitHub. com, allowing users to synchronize
their local changes with remote repositories, review code changes, and collaborate with other
developers more effectively. Additionally, it offers visual diff tools to compare changes and resolve

merge conflicts, making it easier for users to understand the modifications in their codebase.

GitHub Mobile

GitHub Mobile is an app designed to bring the core functionalities of GitHub to mobile devices,
enabling developers to manage their projects on the go. It allows users to triage notifications,
review and merge pull requests, and browse repositories all from their smartphones or tablets.
GitHub Mobile provides a seamless experience for collaborating with team members, enabling
code discussions, and keeping up with project activities without the need for a desktop environ-
ment. The app offers a responsive and intuitive interface, ensuring that developers can maintain

productivity and stay connected with their projects anytime, anywhere.

GitHub CLI

GitHub CLI (gh) is a powerful command-line tool designed to seamlessly integrate GitHub features
into your terminal. It allows developers to manage repositories, issues, pull requests, releases, and
more without leaving the command line. This integration streamlines workflows by providing a

consistent and efficient interface for interacting with GitHub.

With GitHub CLI, you can clone repositories, create and manage pull requests, view and comment
on issues, and even manage workflows and actions, all with simple commands. The tool is de-
signed to work alongside Git, enhancing its capabilities by adding GitHub-specific functionality.
This makes it easier to perform common tasks such as creating pull requests or checking the status
of issues directly from the terminal. You begin every command with gh followed by the function

you want to perform — for example, gh pr create.

GitHub.com

60 Navigating the GitHub Interface

Installation and usage of GitHub CLI are straightforward, with support for macOS, Linux, and
Windows. The tool is highly customizable, allowing users to configure aliases and shortcuts for
frequently used commands. Overall, GitHub CLI is an essential productivity tool for developers

who prefer to work in the terminal and want to streamline their GitHub workflows.

GitHub Marketplace

The GitHub Marketplace is a platform where developers can discover, purchase, and integrate
various tools and applications to enhance their workflows on GitHub. It offers a wide range of
tools, including those for continuous integration, project management, code review, generative

Al development, and product extensions that help enhance existing functionalities.
Here are some key features of the GitHub Marketplace:
e Variety of tools: You can find both free and paid tools that cater to different aspects of

the development process

e Seamless integration: Tools available on the marketplace can be easily integrated into

your GitHub projects without the need for multiple accounts or payment methods

e Categories: The tools are categorized to help you find exactly what you need, such as test-

ing, documentation, feature management, performance optimization, and Generative Al

If you’re a developer looking to streamline your workflow or add new functionalities to your

projects, the GitHub Marketplace is a great place to explore!

Certification tip

N\) 4
/@ You will likely come across 2-3 questions about GitHub Desktop and the GitHub

Marketplace. Be sure to get familiar with their purpose and their general interfaces.

Summary

In this chapter, we navigated the GitHub interface, exploring its features and functionalities. We
started by understanding the technical requirements, such as needing a GitHub account, which
can be created for free. GitHub is a powerful platform that has revolutionized the way developers
work, making it easier to collaborate, share code, and manage projects. With over 100 million

developers, it is the largest developer ecosystem.

Chapter 2 61

GitHub is a hosting platform for Git repositories, providing multiple interfaces and capabilities
for collaboration. It supports both cloud-based and self-hosted deployments. Unlike Git, which
operates locally, GitHub centralizes repository hosting, user management, and collaboration

features, reducing the risk of single points of failure.

We also explored the differences between Git and GitHub, highlighting GitHub’s advantages in
redundancy, collaboration, project management, and tool integration. GitHub’s core function-
alities include collaboration, productivity, security, scale, and Al. GitHub Copilot, powered by

OpenAl, enhances these functionalities by providing code assistance and automation.

GitHub offers various plans and account types to cater to different needs, from individual devel-
opers to large enterprises. The plans include GitHub Free, GitHub Pro, GitHub Team, and GitHub

Enterprise, each offering different features and support levels.

We finally looked at the various GitHub products, features, and tools that add more functionality

to Git and aid collaboration while building software.

In Chapter 3, we will dive deeper into the creation and management of repositories. We will look
at the various ways in which to interact with Git repos, some good practices for enabling collab-

oration securely, and take a quick peek at the GitHub Flavored Markdown style.

Before we move on to Chapter 3, let’s do a quick test of your knowledge.

Test your knowledge

1. AGitrepository contains which of the following? (Select one):

a. [Issues

b. Pullrequests
c. .gitignore

d. Projects

2. Which of the following can own a repository on GitHub? (Select two):

Individual

a.
b. Enterprise

o

Organization

e

Team

62

Navigating the GitHub Interface

3. You have just joined an online fashion store company as a web developer and your new

manager has asked youtorun gh issue create -t "New Employee" -a "@onboarding-

bot" to begin your onboarding process. On which of the following tools/products will

you run this?

a
b.
C.

d.

GitHub Desktop
Git
GitHub CLI

GitHub Projects

Useful links

Creating an account on GitHub: https://docs.github.com/en/get-started/start-

your-journey/creating-an-account-on-github

e GitHub Features: https://github.com/features

e GitHub CLI Reference Manual: https://cli.github.com/manual/gh

e Developers get by with a little help from AI: Stack Overflow Knows code assistant pulse

survey results: https://stackoverflow.blog/2024/05/29/developers-get-by-with-
a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-

results/

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://docs.github.com/en/get-started/start-your-journey/creating-an-account-on-github
https://github.com/features
https://cli.github.com/manual/gh
https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/
https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/
https://stackoverflow.blog/2024/05/29/developers-get-by-with-a-little-help-from-ai-stack-overflow-knows-code-assistant-pulse-survey-results/
https://packtpub.com/unlock

Repository Creation and
Management

Chapter 3 covers essential topics such as creating a new repository, understanding repository
settings, managing collaboration and permissions, cloning repos using VS Code, and making
the first commit by adding a README . md file. Additionally, it introduces the Markdown language
and its GitHub-specific variant, GitHub Flavored Markdown (GFM), explaining how to format
text, create lists, add emphasis, blockquotes, code, links, and images. Then, we will talk about
security and access control, webhooks and GitHub Apps, and using GitHub insights to monitor

repository activity and health.
We will cover the following main topics:

e Creating a new repository

Lab 3.1 Creating a blank repository

e The markdown language and the GitHub markdown
e Lab 3.2 —Enriching README Files with Markdown Syntax
e Repository settings and management

e Collaboration and permissions

64 Repository Creation and Management

Technical requirements

Before you begin, you will need the following for the lab exercises:

e A GitHub account (we created this in Chapter 2)

e Aworking computer

e An Integrated Development Environment (IDE) that is Git-compatible and that you
are comfortable with. There are some popular IDEs that can be freely installed on your
computer. You can consider installing Visual Studio Code (VS Code), a very commonly
used lightweight editor. We will be using VS Code as the preferred option throughout
this book. To install VS Code, visit https://code.visualstudio.com, download the one

compatible with your computer and install it.

Creating a new repository

This section will guide you through the process of creating a new repository on GitHub, emphasizing

the importance of initial setup for long-term project success.

A gitrepository, often referred to as arepo, is a central location where all the files for a particular
project are stored. It tracks all changes made to these files, allowing multiple people to collaborate
on the project. It serves as a centralized hub where all project files, including code, documentation,
and other resources, are stored. Repositories enable version control, allowing you to track changes,
revert to previous states, and collaborate with others seamlessly. Understanding the structure

and purpose of a repository is essential for effective project management and collaboration.

When creating a new repo, there are some good practices to consider. Let us discuss them one

by one.

Repository naming conventions

Choosing the right name for your repository is crucial for clarity and discoverability. Here are

some best practices for naming your repositories:

e Bedescriptive: Use a name that clearly describes the project’s purpose or functionality.
e Keepitshort: Aim for a concise name that is easy to remember and type.
e Use hyphens: Separate words with hyphens (e.g., my-awesome-project) for readability.

e Avoid special characters: Stick to alphanumeric characters and hyphens to avoid issues

with URLs and command-line tools.

https://code.visualstudio.com

Chapter 3 65

e Consistency: Follow a consistent naming convention across all your repositories to

maintain organization.

Initializing with README and .gitignore

Initializing your repository with a README and .gitignore file is a good practice that sets the

stage for a well-organized project:

e README: The README file is the first thing visitors see when they visit your repository. It
should provide an overview of your project, including its purpose, how to install and use
it, and any other relevant information. A well-written README helps others understand

and contribute to your project.

e .gitignore: The .gitignore file specifies which files and directories Git should ignore.
This is useful for excluding files that are not relevant to the project, such as temporary files,
build artifacts, and sensitive information. By keeping your repository clean, you ensure

that only necessary files are tracked and shared.

Choosing a license

Choosing a license for your repository is an important decision that determines how others can

use, modify, and distribute your project. Here are some common licenses and their implications:

e MIT license: A permissive license that allows others to use, modify, and distribute your

project with minimal restrictions.

¢ GNU General Public License (GPL): A copyleft license that ensures the software and
any modifications to it remain free and open for everyone, meaning your work must be
released under the same license.

e ApacheLicense 2.0: A permissive license thatincludes a patent grant, providing additional
protection for contributors.

e Creative Commons Licenses: Suitable for non-software projects, these licenses offer
various levels of permissions and restrictions. Selecting the right license ensures that your

project is used in a way that aligns with your intentions and legal requirements.

These practices are highly recommended for the long-term sustainability and maintainability

of your source code.

66

Repository Creation and Management

Certification tip

\ ! 7/
/@\ You may be asked to identify which license allows modification and redistribution

without disclosure. That would be the MIT license.

Let us go straight into practical and generate content in a new GitHub repository.

Lab 3.1 — Creating a blank repository

In this lab, we are going to create a repository without initializing a README or any content. You

can follow along in the lab video Chapter 3 Lab 3.1: Creating a Blank Repo in the playlist https://

WWW .

youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmagAcbBxJ39w.

Create a new GitHub repo

Let’s create a new GitHub repo:

1

2
3
4.
5

Ensure you are logged into your GitHub account.

Click the + icon in the top-right corner and select New repository.

Use my-blank-repo as the name for your repository in the Repository name field.
Add a brief Description of your project (optional but recommended).

Next, you are faced with two options in the field Public or Private. In this case, select

Private (visible only to you and your collaborators).

This is important: Ensure you do not initialize your repository with a README file. That s,
Add a README file must be deselected.

For the Add .gitignore field, select None. This is also important.

https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w
https://www.youtube.com/playlist?list=PLuX8xLieCtTP3-AsobdFLmaqAcbBxJ39w

Chapter 3

67

8. For the License field, select None:

Create a new repository Switch back to classic experience

Repositories contain a project's files and version history. Have a project elsewhere? Import a repository.
Required fields are marked with an asterisk (*).

1 General

Owner * Repository name *

4 ayo-creator « l
Great repository names are short and memorable. How about animated-adventure?

Description

0/ 350 characters

2 Configuration

Choose visibility * o Public ~
Choose who can see and commit to this repository

Add README oOff o
READMES can be used as longer descriptions. About READMES

Add .gitignore

.gitignore tells git which files not to track. About ignoring files

No .gitignore ~

Add license
Licenses explain how others can use your code. Abgut licenses

Mo license ~

Create repository

Figure 3.1: Repository creation form, leaving README, .gitignore and License options
blank

Repository Creation and Management

9. Click the Create repository button to finalize the process.

Your newly created repository would look like the following figure:

= O ayo-creator | my-blank-repo £ Q. Type [fto search RN e T S B = i
<> Code () Issues I Pullrequests () Actions [[] Projects (0 Security [~ Insights &1 Settings
+r my-blank-repo Frivats @ Unwateh 1 - ok B - 17 Star 0 -

& at

Set up GitHub Copilot Add collaborators to this repository

Hub username or email address.

Use GitHub's A

88 you code. Search for people using thel

palr progr T to autocomplete sugges

Get started with GitHub Cogilat Invite collaborators

Quick setup — if you've done this kind of thing before

[f5etupinDesktop or HTTRS 5SH https://github. con/ayo-creatar/my-blank-repo.git i
Get started by croating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and gitignore,
...of create a new repository on the command line
echo "# my-blank-repo” == README.md fis]
git init
git add README.md
git commit -m “first commit"
git branch -M main
git remote add origin https://glthub.com/ayo-creator/my-blank-repo.git
git push -u origin main
...or push an existing repository from the command line
git remote add origin https://github.com/ayo-creator/my-blank-repo.git fim]

Figure 3.2: A blank repo will show quick setup instructions

2, Quick tip: Need to see a high-resolution version of this image? Open this

book in the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader and a free PDF/ePub copy of this book are
included with your purchase. Scan the QR code OR visit packtpub.com/
unlock, then use the search bar to find this book by name. Double-check

-()- the edition shown to make sure you get the right one.

E5HE

http://packtpub.com/unlock
http://packtpub.com/unlock

Chapter 3 69

If you haven’t initialized any files in a repo, you will be presented with quick setup
instructions on how to create a local Git repo (Git repo stored locally on your computer)
or push an existing one. Leave this page open on your browser as we will come back to it.
Within the Quick setup — if you’ve done this kind of thing before box, copy the HTTPS
URL so that you have it handy on your clipboard for future use.

Let us now connect with an IDE.

Sign in to GitHub on VS Code and Clone Git Repository

Cloning a Git repository means creating a local copy of a remote repository (e.g. from GitHub).

See Figure 1.4 in Chapter 1 for a diagram that explains cloning.

Letus clone this blank repo we just created on GitHub (remote) to our local machine. You can follow

along this lab exercise with the corresponding video — Chapter 3 Lab 3.1: Creating a Blank Repo:

1
2.

Launch VS Code from your computer.

Select Clone Git repository...

This will pop up the search bar/command palette at the top-center of your window asking

for the URL to the repo you would like to clone.

You can paste the URL copied in step 9 in the previous subsection and press Enter. This
would launch an authentication screen on your browser. Alternatively, click on Clone
from GitHub.

The difference between these two options is that the latter will automatically integrate
your IDE (VS Code) to your GitHub account such that you can directly see a list of all your
repos from VS Code. This has the benefit of you not needing to remember the URL or avoid

typo errors since you are just selecting from a list:

70 Repository Creation and Management

Welcome = (%) Clone from GitHub remote sources

]

Visual Studio Code

Walkthroughs

Learn the Fundamentals

Figure 3.3: Cloning from GitHub helps to pick from listed GitHub repos

5. This will askif you want to allow the GitHub extension to sign in to GitHub. Select Allow.

A new browser window will launch for you to authorize the extension.

! Welcome

Visual Studio Code

«

The extension 'GitHub' wants to
sign in using GitHub.

Gancel [pllow

Figure 3.4: Allow GitHub authentication to launch

Chapter 3 71

6. For VS Code extension to integrate seamlessly with your GitHub account, it will need
some of your profile information and repository metadata, which you must give consent

to by authorizing it. Select Authorize Visual-Studio-Code:

< o ()

Authorize GitHub for VS Code

GitHub for VS Code by Visual Studio Code
wants to access your ayo-creator account

Personal user data W
Email addresses (read-only), profile information (read-only)

0 » =i

Repositories v
Public and private
LS
@ Workflow s

Update GitHub Action Waorkflow files.

Organization access

- Mybuesinessayo +

Authorize Visual-Studio-
Cancel
Code

Authorizing will redirect to
https://vscode.dev

() owned & operated (©) Created More than 1K
by GitHub 7 years ago GitHub users

Figure 3.5: Authorize the GitHub app to access basic user info and repo details

72 Repository Creation and Management

7. Ifthe authorization was successful, it will ask you to return to VS Code. Click Open Visual
Studio Code:

&« c 23 github.comfloginfoauth/authorize G ¥

Open Visual Studio Code?

https://vscode.dev wants to open this application.

D Always allow vscode.dev to open links of this type in the associated app

Cancel Open Visual Studio Code

Figure 3.6: Open VS Code once authorization is successful
You will now be able to see alist of all the repos you have on GitHub displayed in VS Code.

Select my-blank-repo from the list:

J Welcome jo-creatorjmy-blank-repa hitps

Visual Studio Code

Editing ev d

Start Walkthroughs

ted with VS Code

r edito

'_ Learn the Fundamentals

Recent

You

e page on startup

Figure 3.7: GitHub is integrated to VS Code and access to repository list is seamless
going forward

8. Navigate to your desired location to store the cloned repo locally and click on Select as
repository destination. VS Code will then download the files from the remote Git repo
on GitHub to the destination you selected locally in a corresponding folder named after

the repo.

Chapter 3 73

9. Once the download is completed, VS Code will prompt you to open the cloned repo. Select
Open or Open in New Window.

You are now ready to work! If you are new to the VS Code interface, you can learn more about the

interface at https://code.visualstudio.com/docs/getstarted/userinterface.

Comnmit changes into Git

Now let us make some changes and commit the changes to Git:

1. Asthisisan empty repo, let us start by adding a README file. Create a new file by clicking

on the New File... icon on the primary side bar on the left:

(%

Figure 3.8: The New File... icon

2. Type README.md as the name of the file.

3. Inthe new file in the code editor, type some text as a description of the repo. A few lines

should be fine. Save the file by pressing Cmd + S or Ctrl + S.

4. Click on the Source Control icon from the activity bar on the left. Then, from the primary
side bar, click the + icon next to the file (README.md).

5. This will stage the file, ready for a Git commit:
L

SOURCE CONTROL = v O

~ Changes
README.md | ‘E U

Stage Changes

Figure 3.9: Stage changes to git

https://code.visualstudio.com/docs/getstarted/userinterface

74

Repository Creation and Management

6. Type the commit message into the text box above it and select Commit.

7. Then, publish your changes by selecting Publish Branch or synchronizing changes by

clicking on the refresh icon in the bottom-left corner of the status bar:

> OUTLINE

s TIM M Jiank-repo (Git) - Synchronize Changej
» Uipmain A 0OA0D WO

i,

Figure 3.10: The synchronize icon helps to keep the remote repo and local repo in sync
8. Gobacktothe browser tab of the repo that you left open earlier. Refresh the page. You will

see the changes you made to your local repo reflect in the GitHub repo:

4 my-blank-repo Frivate

& Unwatch 1

¥ main ~ ¥ 1Branch © 0 Tags C Gotofile t Add file ~ <> Code =~
Ayodeji Ayodele Drafted the first lines of my README

BdS%c0de - yesterday G) 1 Commit
E] README, md Drafted the first lines of my README yesterday
[README &

You are welcome to my repository.

| am creating my first README file, which will contain all the details about what you can find in here.

Figure 3.11: GitHub repo reflecting new changes

Chapter 3 75

Great job! So far, you have been able to:

1. Create a GitHub repository,
Clone that repository to a local machine,
Make changes to it by adding a README file,

Commit the changes to the repo, and

AR S

Synchronize the changes in the local repo with the remote repo

Now let us talk more about the README file. The README file is usually saved with the file extension
.md, which is for markdown files. This means the file is saved as README .md. Markdown files are

written in a special format known as the Markdown language.

In the next section, we will discuss the universal Markdown language, its syntax, and the specific
variance for GitHub named the GitHub Flavored Markdown (GFM).

The markdown language and the GitHub markdown

Markdown is a simple and easy-to-read markup language designed to format plain text and
is widely used for writing software documentation, README files, and blog posts because of its
simplicity and readability. It allows you to create well-structured documents using plain text
syntax thatis easy to read and write. By learning Markdown, you can create clean and professional-

looking documents without needing to learn complex formatting languages.

GFM

GFM is an extension of the standard Markdown language, tailored specifically for use on GitHub.
GFM includes additional features that enhance the functionality and presentation of Markdown
documents on GitHub. These features include support for tables, task lists, strikethrough text,
and automatic linking of URLs. Understanding GFM allows you to take full advantage of GitHub’s

capabilities for creating rich and interactive documentation.

76 Repository Creation and Management

Formatting text

Let us cover the basics of formatting text using Markdown, including headings, lists, emphasis,

and more.

Formatting text in Markdown is straightforward and intuitive. Here are some common formatting

options:

Headings
Use # for headings. The number of # symbols indicates the heading level (e.g., # is Heading 1, ##

is Heading 2). See the following example:

This is my biggest heading

This is my next biggest heading
#i## This is my not-too-big heading
#i### Well, quite a heading

The resulting view would be as follows:

This is my biggest heading

This is my next biggest heading

This is my not-too-big heading
Well, quite a heading

Figure 3.12: View of the headings

Chapter 3

77

Lists

Create unordered lists with - or *, and ordered lists with numbers (e.g., 1., 2.). Here’s an example:

Here is a numbered list of fruits:

1. Orange
2. Apple
3. Grapes

and, here is an unordered list of veggies:
- Broccoli

- Spinach

The resulting view would be as follows:

Here is a numbered list of fruits:
1. Orange
2. Apple

3. Grapes

and, here is an unordered list of veggies:

» Broccoli

e Spinach

Figure 3.13: View of the lists

Emphasis and blockquotes

For emphasis, use * or _ for italic text (e.g., *italic*), and ** or __for bold text (e.g., **bold**).

For blockquotes, use > to create blockquotes (e.g., > This is a blockquote). Let’s use them in

an example:

We have to be **strong** and help those that are _not as strong_.

> The best way to find yourself is to lose yourself in the service of

others.

78 Repository Creation and Management

The resulting view would be as follows:
We have to be strong and help those that are not as strong.

The best way to find yourself is to lose yourself in the service of
others,

Figure 3.14: View of the emphasis and blockquotes

Code
Use backticks () for inline code (e.g., “ code™) and triple backticks for code blocks (e.g., ~ ™):

Compiled languages can be transformed into machine code. Languages such as
"C, C++ and Java’ are great examples.

public class HelloWorld {
// This program prints "Hello, World!" to the console
public static void main(String[] args) {
System.out.println("Hello, World!");

T java

// This example shows syntax highlighting, which uses color and style of
source code to make it easier to read.

public class HelloWorld {
// This program prints "Hello, World!" to the console
public static void main(String[] args) {
System.out.println("Hello, World!");

Chapter 3 79

@ Quick tip: Enhance your coding experience with the AI Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

(a, b) { 1 2
{ : a + b};

& The next-gen Packt Reader is included for free with the purchase of this book. Scan
the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

E5HE

The resulting view would be as follows:

Compiled languages can be transformed into machine code. Languages such as €, C++ and Java are great examples.

public class HelloWorld {
// This program prints "Hello, World!"™ to the console
public static void main(Stringl[] args) {
System,out.printin{"Hello, World!");
}

f// This example shows syntax highlighting, which uses color and style of source code to make it easier to read.
public class HelloWorld {
// This program prints "Hello, World!" to the console
public static void main({Stringl] args) {
System.out.println("Hello, World!");
}

Figure 3.15: View of the code

http://packtpub.com/unlock

80 Repository Creation and Management

Creating links and images

Let’s talk about how to add links and images to your Markdown files, enhancing the interactivity
and visual appeal of your documents. Adding links and images in Markdown is simple and

enhances the usability of your documents:

e Links: Use [text](link) to create a hyperlink (e.g., [GitHub](https://www.github.
com)). This can also be a relative URL pointing to a location within the files in the repo,
e.g., docs/setup-instructions.md.

e Section links: Use #heading-text-without-spaces to link directly to a section in the
same file. You can usually get this by hovering over the section heading and copy the link
address, e.g., #Chapter-1.

e Images: Use ! [alt text](image-link) to embed an image. (e.g., ! [GitHub Octocat]
(https://myoctocat.com/assets/images/base-octocat.svg)). Byincorporating links
and images, you can provide additional context and visual elements to your documentation,

making it more engaging and informative.

Tables

What about how to create tables, useful for organizing data? Markdown supports the creation
of tables, which are essential for organizing information and displaying code. Use pipes | and

hyphens - to create tables. For example:

| Header 1 | Header 2 |

| Row 1 | bata 1 |
| Row 2 | pata 2 |

The first line indicates the column headers while the second is more of an underline indicating

the beginning of the data rows. Tables help in organizing data neatly.

Chapter 3 81

Advanced markdown features

Markdown includes several advanced features that enhance the functionality and interactivity

of your documents:

e Tasklists: Use - []forunchecked tasks and - [x] for checked tasks:

- [] Task 1
- [x] Task 2

e Mentions: Use @username to mention a GitHub user, which notifies them of the mention.

e Emojis: Use :emoji_name: to add emojis (e.g., : smile: for @). GitHub supports a wide
range of emojis that can be used to add a touch of fun to your documents. These advanced
features make your Markdown documents more interactive and engaging, fostering better

collaboration and communication.

Visithttps://docs.github.com/en/get-started/writing-on-github/getting-started-with-
writing-and-formatting-on-github/basic-writing-and-formatting-syntax tolearn more
about the GFM and syntax.

Certification tip

\ 7/

/@\ You will encounter several questions about markdown, Spend some time to practise

the following lab, and try out various output formats.

Let us try these out shortly in a lab exercise!

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax

82

Repository Creation and Management

Lab 3.2 — Enriching README Files with Markdown
Syntax

In this lab exercise, we will modify the README . md file that we created in Lab 3.1 in this chapter.

We will also showcase how to make changes to files in a repo without the IDE or CLI (Terminal

or Command Prompt). Remember, every change is a commit and this change is no exception:

1.

Open up the my-blank-repo repo on GitHub (you may still have this open already from
the previous lab exercise).

On the right-hand of the home page (README), click on the pencil icon to edit the file.
This will take you to the edit mode of the markdown file:

i my-b]ank—repo Private & Unwatch 1
¥ main ~ ¥ 1Branch ©> 0 Tags Q. Gotofile t Add file - <> Code -
Ayodeji Ayodele Drafted the first lines of my README Bd9c0de - yesterday T5) 1 Commit
Lj README.md Drafted the first lines of my README yesterday

i / j:

You are welcome to my repository.

I am creating my first README file, which will contain all the details about what you can find in here.

Figure 3.16: You can edit the README.md directly from the home page

Copy the following text, and append or replace the existing content:

The Blank Repo

Welcome to the blank repo.

A Tale of Markdown

In a **blank repo**, so pristine and clear,
No code to run, no bugs to fear.
Just a canvas, waiting to be filled,

With dreams and code, and skills instilled.

Chapter 3

83

Links to Dreams

[Visit GitHub](https://github.com) to start your quest,

Where coders gather, and ideas manifest.
A hyperlink to worlds unknown,
Where every coder finds their own.

Images of Hope

I[GitHub Logo](https://github.githubassets.com/images/modules/logos

page/GitHub-Mark.png)

An image speaks a thousand lines,

In Markdown, it perfectly aligns.
Codeblocks of Creation
““python

def hello world():
print("Hello, World!")

In codeblocks, our dreams take flight,

With every line, we chase the light.

Tables of Structure

| Feature | Status |
[| meemee |
Ideas	Pending
Code	In Progress
Success	Achieved

In tables, we find our way,

Organizing thoughts, come what may.

The End

84 Repository Creation and Management

So here's to the repo, blank and pure,
A place where dreams and code endure.
With Markdown styles, we pave the way,
For a brighter, coded day.

4. Select the green button, Commit changes..., on the top-right side of the page.

5. Modify the commit message to: Enrich my README with markdown.
Optionally, you can add more text into the larger box.

6. Select the option Commit directly to the main branch and click on Commit changes:

i my-blank-repo README.med in main Cancel changes Cammit chang
' P

Edit | Preview | | Show Dift

Animage speaks a thousand fines,

I Markdown, It perfectly aligns. Commit changes]
Codeblocks of Creation Gomoit massage
Enrich my README with markdown
def helloworldi): &

print{"Hello, Worldlé Extended description

Markdown is ewesome!|
In codeblocks, our dreams take flight
‘With every line, we chase the light:

Tables of Structure
Feature Status
3 it di e noi h
S Pending O Cemmit disectly to the nain branc
(! Creste a new branch for this commit and start a pull request
Code In Progress o mote st Al saquEsts

Success | Achieved

In tables, we find our way,
Organizing thoughts, come what may.

The End

So here's to the repo, blank and pure,

Figure 3.17: Commit changes made to the repository with a commit message

Perfect! You have just learned Markdown 101. Congratulations! £

Chapter 3 85

Your my-blank-repo should look like the following image, better styled and beautiful:

1 my-blank-repo Frivate ® Unwatch 1
¥ main ~ ¥ 1Branch © 0 Tags Q Gotofile t Add file ~
-i- ayo-creator Enrich my README with markdown == thEe162 - 2 minutes ago (5) 2 Commits
[} README.md Enrich my README with markdown 2 minutes ago
0 README =

The Blank Repo

Welcome to the blank repo.

A Tale of Markdown

In a blank repo, so pristine and clear,

No code to run, no bugs to fear.

Just a canvas, waiting to be filled,

With dreams and code, and skills instilled.

Links to Dreams

Visit GitHub to start your quest,

Where coders gather, and ideas manifest.
A hyperlink to worlds unknown,

Where every coder finds their own.

Images of Hope
Figure 3.18: Final view of the README markdown on the repo landing page

We've dealt well with the basics of creating a repo, making changes to files and formatting
documents with markdown. In the next section, we will talk about some fundamentals of

repository management on GitHub.

Repository settings and management

This section provides an overview of the repository settings page on GitHub, highlighting the

various options available for managing your repository.

86 Repository Creation and Management

The repository settings page on GitHub is where you can configure various aspects of your
repository. To access the settings, navigate to your repository and click on the Settings tab. Here,
you can manage general settings, branches, webhooks, integrations, and more. Understanding
these settings is crucial for maintaining a well-organized and secure repository. Key areas include

repository details, access control, and advanced settings.

Some things to consider when managing a repo include:

Branch management

This section covers how to create, delete, and manage branches within a repository, enabling

effective version control and collaboration.

Branches are an essential feature of GitHub that allow you to work on different versions of a

project simultaneously. Here’s how to manage branches:

e Creating a branch: To create a new branch, go to the repository’s main page, click the
branch dropdown (main is currently selected in the image below), type a new branch name,

and press Enter:
+ my-blank-repo rivate

Branch dropdown

¥ main ~ ¥ 1Branch © 0 Tags

Switch branchesftags X

Q. Find or.create a branch...
g

Branches = Tags | Type new branch name
here and press Enter

+ main default

View all branches

Figure 3.19: Creating a new branch using the search box

Chapter 3 87

Switching branches: Use the branch dropdown to switch between branches.

Deleting a branch: To delete a branch, click on Branches next to the branch dropdown,
find the branch you want to delete, and click the delete icon {j next to it.

Merging branches: To merge changes from one branch to another, create a pull request
and merge it after review. Effective branch management allows multiple collaborators to

work on different features or fixes without interfering with each other’s work.

Managing issues and pull requests

Up next are issues and pull requests (PRs), vital tools for smooth collaboration on GitHub:

\

@,

Issues: Use issues to track bugs, enhancements, and other tasks. Create a new issue by
clicking the Issues tab and then New issue. Assign labels, milestones, and assignees to

organize and prioritize issues.

PRs: PRs are used to propose changes to the repository. Create a PR by clicking the Pull
requests tab and then New pull request. Review and discuss the changes before merging

them into the main branch.

Best practices: Clearly describe issues and PRs, use labels and milestones for organization,
and conduct thorough code reviews to maintain code quality. Managing issues and PRs
effectively ensures that your project stays on track and that contributions are reviewed

and integrated smoothly.

Certification tip

7/
Branch protection and collaborator access are common topics on the exam. Be sure

you understand the difference between pushing directly vs. pull requests under a

protected branch.

Security and access control

Now, we will explain how to set up security policies and manage access permissions to protect

your repository and control who can contribute.

Managing who can access and contribute to your GitHub repository is essential for maintaining

code integrity and project security. Here’s how to set up access permissions and implement key

security measures:

88 Repository Creation and Management

Access permissions

To manage access:

1. Navigate to your repository on GitHub.

2. Click Settings | Collaborators under the Access section.

de (%) lssues 1 11 Pullrequests (=) Actions [0 Projects () Security |~ Insights £} Settings
%2 Gonaral Collaborators and teams
hocess & Private repository
Only those with access to this repository can view it Manage visibility

Py Collaborators

Code and sulomation

Direct access A
¥ Branches
1 user has access to this
@ Tags repositeny. 1 collaboratar,
LG Rules e
{1 Actions w
5w
do Webhooks Manage access Add people
£ Environments —
-
= Codespaces O Sselectall Type -
1 Pages
Sacurity Cy Find a coilaborator,

@ Advanced Security
- — F ayooutiook a
£ Deploy keys = TP Callaboeator s

[¥] Secrets and variables v

Figure 3.20: Add collaborators to the repository from the settings page

3. Click Add people to invite collaborators.
4. Type the GitHub handle and click on Add <name> to add them.

Newly added collaborators will receive an invitation by email. They will be able to collaborate on

the repo once they accept the invitation.

Note

\G/‘ For personal repositories, you can invite collaborators directly. For more granular

control, consider using an organization repository.

Chapter 3 89

Security policies

There are two ways you might implement security policies:
e Branchprotection rules: Prevent unauthorized changes by enforcing rules on key branches.

a. Go to Settings | Branches.

b. Click Add branch ruleset to configure protections like required reviews, status

checks, or commit signing.

e SECURITY.md: Add a SECURITY.md file to your repository to guide users on how to report
vulnerabilities responsibly. This file helps streamline the disclosure process and ensures

timely responses from maintainers.

Automated security tools

There are also automatic security tools that you can set up to continually ensure the security of

your code. Let’s consider one of them.

Dependabot alerts: Enable Dependabot to automatically scan your dependencies for known
vulnerabilities and suggest updates. To enable Dependabot, go to Settings | Advanced Security,

and enable Dependabot alerts and Dependable security updates.

> Tags Dependabot

G Rules 5 Keep your dependencies secure and up-to-date. Learn more about Dependabot.

(=} Actions w
Dependabot alerts =

& Webhooks Recelve alerts for vulnerabilities that affect your dependencies and manually generate Dependabot Enable ||

E3 Envirenments pull requests to resolve these vulnerabilities. Configure alert notifications.

& Codespaces
Dependabot security up

5 Pages K i e . . . z
Enabling this option will result in Depandabot automatically attempting to apen pull requests to Enable
resolve every open Dependabot alert with an available patch.

Security

I @) Advanced Security Grouped security updates

&2 Deplay keys Groups all available updates that resolve a Dependabot alert into one pull request (per package Enable
manager and directary of requiremment manifests). This option may be overridden by group rules

[¥] Secrets and variables R specified in dependabotymi - learn more here

Figure 3.21: Enable Dependabot alerts from the repository settings

By combining access controls with proactive security practices, you can protect your repository

from unauthorized changes and ensure a secure collaboration environment.

Webhooks and GitHub apps

This section covers what are webhooks and GitHub Apps that help integrate your repository with

other tools and services to enhance functionality and automation.

90

Repository Creation and Management

Webhooks and integrations allow you to extend the functionality of your GitHub repository:

Webhooks: Webhooks are automated messages sent from your repository to a specified
URL when certain events occur (e.g., push, pull request). To set up a webhook, go to
Settings | Webhooks and click Add webhook. Enter the payload URL and configure the

events you want to trigger the webhook.

GitHub Apps: GitHub Apps are integrations built on the GitHub platform that automate
workflows, enhance development processes, and provide additional functionality directly
within repositories. They can perform tasks like managing issues, automating code reviews,
deploying code, or integrating with external services. GitHub Apps use fine-grained
permissions and can act on behalf of a user or independently, making them ideal for both
individual developers and organizations looking to streamline their DevOps pipelines.
Navigate to Settings | GitHub Apps to see which GitHub Apps are currently installed in
the repository. You can visit the GitHub Marketplace to search for integrations that suit
your workflow and then install in your organization or repository. Using webhooks and
GitHub App integrations, you can automate tasks, streamline workflows, and enhance

collaboration.

Repository insights

This section explains how to use GitHub insights to monitor repository activity and health,

providing valuable information for project management.

GitHub provides various insights and analytics tools to help you monitor the activity and health

of your repository. All these options appear under the Insights tab of your horizontal menu:

Pulse: The Pulse page gives an overview of recent activity, including commits, pull requests,

and issues.

Code frequency: The Code frequency section provides detailed analytics on code frequency,
displaying code additions and deletions over a period of time Access it by clicking Insights
| Code frequency.

Traffic: The Traffic page shows data on repository views and clones, helping you
understand how people are interacting with your project.

Contributors: The Contributors page lists all contributors and their contributions, giving
you insight into who is actively working on the project. By regularly reviewing these
insights, you can make informed decisions about project management and identify areas

for improvement.

Chapter 3 91

Note

\E/ To use repository insights features, you need to make the repository public or at

least a GitHub Pro subscription.

We have now discussed a few things that can help you configure and manage your repository as a
unit. This can set you up before you can now invite team members to collaborate on its contents.
There are a few more important things you should know if you want to scale such as managing
multiple repositories at the organization level and the enterprise level. For now, we will look at

what’s next to learn at the repo level, collaboration.

Collaboration and permissions

This section will explore how to effectively collaborate with others on GitHub, including managing
permissions and fostering a collaborative environment. These include practices for managing
collaborators and teams, forking and pull requests, code reviews, managing conflicts in code,

and collaborating on projects.

Collaborators and teams

Adding collaborators and managing team access are essential for effective collaboration on GitHub:

e Adding collaborators: We briefly discussed how to invite collaborators to a repository
earlier in this chapter under the Security and access control section. There are additional
ways you can unlock collaboration at the organization level. For example, GitHub has
additional roles out of the box that allow you to separate the level of access people have.

This will be discussed more in detail in later chapters.

e Outside collaborators: If you're working within a GitHub organization, you can grant
repository access to individuals who are not members of the organization by adding
them as outside collaborators. You can then choose the level of access to grant for each
outside collaborator. Adding an outside collaborator to a private repository will use a paid
license, unless you are on a free plan.

e Managing teams: If you are part of an organization, you can create teams to manage access
more efficiently. Go to your organization’s page, click Teams, and create a new team. Add
members to the team and assign repository access levels. By organizing collaborators and
teams, you can streamline collaboration and ensure that everyone has the appropriate

level of access.

92 Repository Creation and Management

Forking and PRs

Forking and PRs are fundamental to open-source collaboration on GitHub. It enables contributors

to propose changes and improvements:

e Forking a repository: Forking creates a personal copy of someone else’s repository. To
fork a repository, go to the repository page and click the Fork button. This creates a copy
under your GitHub account, where you can make changes without affecting the original
repository.

e Creating PRs: Once you’ve made changes in your forked repository, you can propose these
changes to the original repository by creating a PR. Navigate to the Pull requests tab in
the original repository and click New pull request. Select the branches to compare and
describe your changes. Submit the PR for review. Forking and PRs enable you to contribute

to projects while maintaining the integrity of the original codebase.

Certification tip

N ! /
- @— Spend some time in understanding the concept of forking a repo and in what scenar-
4 AN

ios doyouneed one. For example, you want to contribute changes to an open source

repository. What will be the first step before you start making your code changes?

Code reviews

Code reviews are a critical part of the development process, helping to maintain code quality
and share knowledge. Let’s discuss some good practices for conducting code reviews, ensuring

high-quality contributions and fostering a collaborative development process:

e Reviewing code: When a PR is submitted, reviewers should thoroughly examine the
changes. Look for code quality, adherence to coding standards, and potential bugs. Use

inline comments to provide feedback and suggest improvements.

e Best practices: Be constructive and respectful in your feedback. Focus on the code, not

the person. Encourage open discussion and collaboration to resolve issues.

e Approving and merging: Once the code meets the required standards, approve the pull
request and merge it into the main branch. Use GitHub’s merge options to choose the
appropriate merge strategy (e.g., merge commit, squash and merge, rebase and merge). We
will dive deeper into branching and merging strategies in Chapter 5. Effective code reviews
ensure that only high-quality code is integrated into the project, fostering a culture of

continuous improvement.

Chapter 3 93

Managing conflicts

You need strategies for resolving merge conflicts, which occur when changes from different
branches conflict with each other. Merge conflicts can arise when changes from different branches

overlap. Here’s how to manage and resolve conflicts:

¢ Identifying conflicts: GitHub will notify you of conflicts when you attempt to merge
branches. Conflicts must be resolved before the merge can proceed.

e Resolving conflicts locally: To resolve conflicts, clone the repository and switch to the
branch with conflicts. Open the conflicting files and manually merge the changes. Look
for conflict markers (e.g., <<<<<<<, =======, >>>>>>>) and decide which changes to keep.

¢ Committing the resolution: After resolving the conflicts, remove the conflict markers,
save the files, and commit the changes. Push the resolved branch back to GitHub.

e Using conflict resolution tools: Many IDEs and Git tools offer conflict resolution features
that simplify the process. By effectively managing conflicts, you can ensure a smooth and

collaborative development process.

Project boards

You can use GitHub project boards for project management, helping teams organize tasks and track

progress. GitHub project boards are a powerful tool for managing tasks and tracking progress:

e Creating a project board: Navigate to the repository’s Projects tab and click New project.
Choose a template (e.g., Kanban, automated) or create a custom board.

e Adding and managing cards: Create cards for tasks, issues, or pull requests. Drag and
drop cards between columns to reflect their status (e.g., To Do, In Progress, Done).

e Automation: Use automation to move cards based on certain triggers (e.g., when a PR is
merged, move the card to Done).

e Collaboration: Assign cards to team members, add labels, and set due dates to keep
everyone on track. Project boards provide a visual overview of your project’s progress,

making it easier to manage tasks and collaborate effectively.

We have now considered a fair bit about creating and managing GitHub repositories. Wow, that
was a brain workout! But don’t worry, the best is yet to come. Let’s recap what we’ve conquered

so far.

94 Repository Creation and Management

Summary

In this chapter, we delve into the intricacies of GitHub, focusing on repository creation and
management. We start by guiding you through the process of creating a new GitHub repository,
emphasizing the importance of initial setup for long-term project success. We cover best
practices for naming repositories, initializing with a README and . gitignore file, and choosing

an appropriate license.

Next, we move on to practical exercises, where we create a blank repository, clone it to our local
machine using VS Code, and make our first commit by adding a README . md file. We also explain

how to synchronize changes between the local and remote repositories.

In the latter part of the chapter, we introduce the Markdown language and its GitHub-specific
variant, GFM. We cover the basics of formatting text, creating lists, adding emphasis, blockquotes,
code, links, and images. By mastering these skills, we can create well-structured and professional-

looking documentation for our projects.

Overall, this chapter equips you with the knowledge and practical skills needed to effectively
manage repositories on GitHub and create comprehensive documentation using Markdown. In
Chapter 4, we will learn the git commands a bit more so that you can feel confident managing
your changes through git and collaborating on source code with others integrating your changes

with a remote codebase.

Test your knowledge

1. Adeveloper on your team created a log file temporarily in their local repo. This log file is
stillimportant for local development, but they don’t want to commit it to the repo. What

can they do to keep the file saved without adding it to version control?
a. Add//DO NOT COMMIT comment at the top of the file to warn other developers
b. Cutand paste the file into another directory
c. Addthelogfile’snameto .gitignore
2. Which of the following markdown statements will produce this output: The Universe is
vast, reach for the stars.

a. The " “Universe "~ is vast, *reach for the stars.*
b. The [Universe] is vast, |reach for the stars. |

c. The **Universe** is vast, _reach for the stars._

Chapter 3 95

Useful links

e Download VS Code: https://code.visualstudio.com
e VSCodelnterface: https://code.visualstudio.com/docs/getstarted/userinterface

e Basic writing and formatting syntax: https://docs.github.com/en/get-started/
writing-on-github/getting-started-with-writing-and-formatting-on-github/
basic-writing-and-formatting-syntax

e Creating and managing repositories: https://docs.github.com/en/repositories/
creating-and-managing-repositories

e Bestpractices for repositories: https://docs.github.com/en/repositories/creating-

and-managing-repositories/best-practices-for-repositories

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://code.visualstudio.com
https://code.visualstudio.com/docs/getstarted/userinterface
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax
https://docs.github.com/en/repositories/creating-and-managing-repositories
https://docs.github.com/en/repositories/creating-and-managing-repositories
https://docs.github.com/en/repositories/creating-and-managing-repositories/best-practices-for-repositories
https://docs.github.com/en/repositories/creating-and-managing-repositories/best-practices-for-repositories
https://packtpub.com/unlock

Basic Git Commands and

Workflows

We are beginning to get deeper into layers of Git and GitHub. So far, we have dealt with the basic

concept of Git and experimented with a few Git commands in Lab I: setting up Git in Chapter 1.

In this chapter, we will go deeper by learning about some intermediate Git commands and flags.
A flag is an extra option or parameter appended to a command to modify its behavior, supply
more context/data, or influence its output. Flags are typically preceded by a hyphen (-) or double
hyphen (--). For example, in the following diagram, looking at the git --version command,

--versionis a flag that tells the git command to display the version number of Git installed:

Command Flag

A A

git --version

Figure 4.1: The behavior of a command can be modified with a flag
What else are we going to explore? We will be covering the following topics:

e Common Git commands

Lab 4.1: Linking a remote repo and pushing changes

Git workLlows

e Troubleshooting common issues

98 Basic Git Commands and Workflows

Let’s get started!

Technical requirements
For the labs in this chapter, you will need the following:

e A working computer with Git installed

e Themy-blank-repo created in Chapter 3 in Lab 3.1 and updated in Lab 3.2

Common Git commands

So far in this book, we have discussed the following Git commands. Let’s discuss them in more
detail.

Setting up a repository

Here are some commands to use when setting up a repo.

Creating a new repository with git init
The git initcommand initializes a new Git repository. This command sets up all the necessary
files and directories that Git uses to track changes in your project. Until you do this, the directory

isregarded as an ordinary folder with no version control.
e Steps:

1. Openyour terminal or command prompt.

2. Navigate to the directory where you want to create the repository.
3. Runthegit init command.
4

Git will create a new .git directory in your project folder, indicating that the

repository has been initialized.

e Usage:

e Example:

mkdir myapp
cd myapp

git init

Chapter 4 99

Configuring repository settings using git config

When setting up a new repository or after installing Git on your computer for the first time, you
canuse git config to configure repository or global options. These options include setting the
user information (e.g., email and name) for signing commits, the default text editor, aliases for

commands, colorizing Git outputs, line endings, and so on.

e Usage:

e Example:

git config --global user.email "your_email@example.com"

Making changes and committing

After the repo setup, here are some commands you will use when making changes to your source

code.

Editing files and checking the status with git status

After making changes to your files, you can use the git status command to see which files have
been modified, which are staged for commit, and which are untracked. It displays the state of

the working directory and the staging area.
e Steps:

1. Edityour files as needed.
2. Runthegit status command.
3. Gitwill display the status of your working directory, showing modified, staged,

and untracked files.

e Usage:

git status

100 Basic Git Commands and Workflows

Staging changes with git add

The git add command stages changes, marking them for inclusion in the next commit. You
can stage individual files or all changes at once. It adds changes in the working directory to the

staging area.
e Steps:

1. To stage a specific file,run git add <file_name>.
2. To stage all changes, run git add.

3. Replace <file_name> with the name of the file you want to stage.

e Usage:

git add <file_or_directory>

e Example:

git add README.md

Committing changes with git commit

The git commit command records the staged changes in the repository’s history. Each commit

should have a meaningful message describing the changes.
e Steps:

1. Runthegit commit -m "Your commit message" command.

2. Replace "Your commit message" with a brief description of the changes.

e Usage:

git commit -m “commit message"

e Example:

git commit -m "Add initial project files"

Now let us consider a few more Git commands that are essential for managing your source files

and collaborating with others.

Some more common commands

We will discuss some other common Git commands in an easy-to-understand way.

Chapter 4 101

Picture this! You are in an art exhibition and, before you, you see four distinct stalls, as depicted

in the pictures that follow.

Fetching changes from a remote repo

At this first stall is Mr. Fetch, a messenger with a bag full of newspapers. Mr. Fetch is at a news-
stand, collecting the latest newspapers and stuffing them into his bag. He doesn’t read them, just

collects them:

I’ll take these updates back
home!

Figure 4.2: Mr. Fetch at the newsstand

Fetch always checks for the latest changes but does nothing with them besides collecting the

newspapers:

e Description: git fetchretrieves updates from a remote repository without merging them
into a local branch. It’s a quick way to check whether there have been newer commits in

the remote repo in comparison to your local copy.

e Usage:

102 Basic Git Commands and Workflows

Cloning an existing repository with git clone

At the second stall is Ms. Clone, a photocopy machine operator. She’s at the copy shop, making

an exact copy of a book. She hands the copy to a customer who looks exactly like her:

Here's an exact copy
for you!

Figure 4.3: Ms. Clone at the copy shop
Clone saves a replica of the remote Git repo on the local machine:

e Description: The git clone command copies an existing Git repository into a new di-
rectory on your local machine. This is useful for working on projects that are hosted on

remote servers such as GitHub.

In a sense, git cloneistheinverse of git init,inthatgit init helpsyouinitialize a
local directory to become a brand-new Git repo, whereas git clone helps you to copy an

existing Git repo from a remote server to your local machine.
e Steps:

1. Openyour terminal or command prompt.

Chapter 4 103

2. Runthegit clone <repository url> command.
3. Replace <repository_url> with the URL of the repository you want to clone.

Git will create a new directory with the name of the repository and copy all the

files and history into this directory.

e Usage:

git clone <repository url>

e Example:

git clone https://github.com/user/repo.git

Downloading changes from others with git pull
Alright, this is getting more interesting. Let’s look at the third stall. Here, you will find Mr. Pull, a
fisherman, fishing at a pond with a fishing rod. He catches a fish and adds it to his basket, which

already has some fish:

Got another one! Adding it to my
collection.

Figure 4.4: Mr. Pull at the fishing pond

104 Basic Git Commands and Workflows

Pull integrates new changes fetched from upstream into the local repo:
e Description: The git pull command fetches and integrates changes from the remote
repository to the local repository.

e Usage:

git pull <remote> <branch>

e Example:

git pull origin main

Pushing changes with git push

At the last stall, you will find Ms. Push, a delivery person with a cart full of packages. Sheis ata

delivery station, loading packages onto a truck. She waves goodbye as the truck drives off:

Off you go! Deliver these to

the remote location.

Figure 4.5: Ms. Push at the delivery station

Chapter 4 105

Push will send all the changes you committed to the remote server:
e Description: Thegit push command uploads your local commits to a remote repository.
This is essential for sharing your changes with others.

e Steps:

1. Runthegit push origin <branch_name> command.

2. Replace <branch_name> with the name of the branch you want to push (e.g.,main).

e Usage:

git push <remote> <branch_name>

e Example:

git push origin main

Now let us look at a few more commands quickly.

Linking a local Git repo to a remote repo with git remote add

When you create or initialize a new Git repo locally and you want to be able to share this with
other developers to collaborate on, you need to connect it to a corresponding repo on a remote
server so that others can have access to clone it. You also want to back up your source code out-
side your local machine. You cannot carry out upstream-related actions such as git pushorgit

fetch without a remote repo connected.

e Description: The git remote add command adds a remote repository URL to your local
repository, allowing you to push and pull changes.
e Steps:
1. Runthegit remote add origin <remote_repository_url>command.
2. Replace <remote_repository_url> with the URL of your remote repository.

3. The name origin is a common convention for the main remote repository.

Creating new branches with git branch

Creating branches allows you to work on different features or fixes in isolation from the main

codebase. With the git branch command, you can list, create, or delete branches.
e Steps:

1. Runthegit branch <branch_name> command.

106 Basic Git Commands and Workflows

2. Replace <branch_name> with the name of the new branch.

e Usage: List, create, and delete branches.

git branch

git branch <branch_name>

git branch -d <branch_name>

e Example:

git branch feature-branch

Switching between branches with git checkout

Switching branches allows you to move between different lines of development. The git checkout

command switches branches or restores working tree files.
e Steps:

1. Runthegit checkout <branch_name> command.

2. Replace <branch_name> with the name of the branch you want to switch to.

.
c
»
O

o
[¢]

git checkout <branch_name>

e Example:

git checkout main

Merging changes between branches with git merge

Merges changes from one branch into another.

c
@
O
0]
o

git merge <branch_name>

e Example:

git merge feature-branch

Chapter 4 107

Certification tip

You will encounter many questions on Git and activities on a Git repo. You may
be given a Git command on a single line and given a list of options to choose from
-()- that best says what the command will do. Some other questions may give you the
inverse, where you are given the output or objective, and then given a list of options
to choose from which is the command that produced such output — for example:
You have been asked to delete a branch named “uat-test.” Which of the following

commands would you run to achieve this?

We have now examined quite a few common commands. Now let’s get hands-on, putting some

of the things we have learned into practice.

Lab 4.1: Linking a remote repo and pushing changes

In this lab, we will examine connecting a local repository to an empty remote repo. We will then
push our changes across to the remote repo to make it available to other developers to collabo-

rate on.

For the following steps, you will need the local app1 repository created in Lab I in Chapter 1.

Linking a local repo to a remote repo

First, let’s create a new blank GitHub repo by repeating the steps in Lab 3.1: Creating a blank

repository:
1. Click the +icon in the top-right corner and select New repository.
2. Use appl as the name for your repository in the Repository name field.
3. Addabrief description of your projectin the Description field (optional but recommended).
4. Then, select Private (visible only to you and your collaborators).
5. IMPORTANT: Ensure you do not initialize your repository with a README file — Add a

README file must be deselected. This is only required when you need to link an existing

local Git repo that already contains files.

6. Inthe Add .gitignore field, select None. This is also important.

108 Basic Git Commands and Workflows

7. Inthe Choose a License field, select None.

Note

V4 We ensure that the Git repo is completely empty because we already have
\@/ a local repo that is not empty, and pushing a local repo to a newly linked

remote repo that is not empty will cause conflicts as the repo contents and

commit history are not aligned.

8. Click the Create repository button to finalize the process. Copy the HTTPS URL within

the Quick setup box. You will need it in later steps.
Now let’s go to VS Code and link the local repo:

1. Launch VS Code and select Open... from the options in the new window (you can also

use the File menu and select Open Folder...).

2. Navigate to the all_my_repos/appl directory you created back in Chapter 1. You should

see the single file you created:

Q

Name Date Modified

R my_new_file.js 26 Jun 2024 at 9:55PM

Cancel Open 7

Figure 4.6: Navigate to your repo directory

Chapter 4 109

3. Don’t select the file. Then select Open. This will open the directory structure of appl in
your IDE.

4. From the Terminal menu, select New Terminal. This will divide your IDE screen and open
the Terminal CLI interface at the bottom. This Terminal embedded within your IDE is for
ease of use. It is virtually the same as the Terminal or Command Prompt CLI you would

have launched directly from your operating system:

20®

|g EXPLORER - 1 Welcome X

APP1

15 my_new_file.js
Walkthroughs
* Get Started with VS Code

learn the
g

@ Learn the Fundamentals

elcome page on startup

Pi J JEB TERMINAL

recordingart wode] is-MacBook-Pro appl % i

QUTLINE

TIMELINE

Figure 4.7: VS Code after the Git repo directory has been opened

5. Run the following command:

git remote add o <remote_reposi

Replace <remote_repository_url> with the URL you copied in step 8 earlier.

Your local repo is now linked to the remote repo and you can subsequently synchronize

changes between them.

110 Basic Git Commands and Workflows

6. Run the following command:

git push --set-upstream origin main

This will upload all your file changes — additions, modifications, or deletions (along with
the commit history) — to the remote repo (origin) in the main branch (you can adjust the
remote and branch names if they’re different in yours). The --set-upstream origin main
flagis only required if no upstream branch has been linked with the local Git repo branch
you are on, therefore, you only need to do this the first time. Subsequently, just git push
is enough. Alternatively, you can synchronize changes by clicking on the refresh icon in
the bottom-left corner of the status bar. This will perform both a Git push and a Git pull

operation.

7. Gobackto the GitHub repository page on the browser and refresh the page. All the changes

you made locally are now present in the remote repo, safely backed up.

Congratulations! You now have a copy of your repo available on a remote server and can now

share your repository with other developers to collaborate on.

Before you start collaborating on your source code, it is good to consider which Git workflow is
best for you and your team (collaborators). In the next section, we will examine some popular

Git workflows.

Git workflows

Git workflows refer to the overall process, sequence, and practices that a team adopts, when using
Git, to streamline the development process and improve collaboration. Workflows sometimes
encompass the entire development process, including how branches are used, and they define

how and when code is integrated, tested, and deployed.
Some common Git workflows include the following:

e Git Flow: This is a structured workflow where separate branches are to be used for fea-
tures, releases, and hotfixes. In this process, you and your collaborators will create a new
branch for a new feature or bug fix and continue working in it until it is completed. This
means there will be no merge into the default or main branch for a long time. These are

called long-lived branches.

Chapter 4 m

Git Flow is one of the earliest established branching flows. However, it is rarely used as

there are some newer workflows that are considered superior and better practice.

e GitHub Flow: The GitHub Flow (yes, named after GitHub) is a much simpler workflow that
uses a single main branch with short-lived feature branches. In this process, collaborators
will create a separate branch only to work on a set of related changes, and then merge.

This makes it lightweight, and it makes continuous deployment easier to implement.
The GitHub Flow was created by Scott Chacon, one of the cofounders of GitHub.

e Trunk-based development: Here, your collaborators work on short-lived branches and
merge changes into the main branch frequently, often multiple times a day, deleting these
branches as soon as they are merged into the trunk. It facilitates continuous integration,
ensuring that collaborators continually re-integrate their work back to the main source

code, leaving only one version for reference and subsequent deployments or consumption.

Remember that all changes to history are merged into the trunk, you can always revert to
any point in time commit from the history, thereby making keeping long-lived branches

irrelevant and unnecessary.

Choosing the right Git workflow for your team can enhance collaboration, set expectations, and
aid efficient software delivery to the end user. Which workflow benefits you will depend on your

needs. The latter two are considered to be more modern and best practice.

While collaborating on your Gitrepo, you may encounter some issues that may impact the stability
and functioning of your repo. We will consider some common issues and how to troubleshoot

them in the next section.

Troubleshooting common issues

Developing problem-solving skills for Git is crucial for maintaining a smooth workflow. This

section will help you identify and resolve common issues that may arise during development.

Common issues and solutions

Here are some common issues and how you might solve them.

112

Basic Git Commands and Workflows

Merge conflicts

These occur when changes from different branches conflict with each other.

Identification: Git will notify you of conflicts during a merge.

Resolution:

a. Open the conflicting files and manually resolve the conflicts.
b. Usegit add to stage the resolved files.

c. Complete the merge with git commit.

Detached HEAD state

This happens when HEAD points to a commit instead of a branch.

Identification: Git will indicate that you are in a detached HEAD state.

Resolution:

a. Create anew branch from the detached HEAD state with git checkout -b <new-

branch-name>.

b. Switch back to the main branch with git checkout main.

Reverting changes

There might be situations when you need to revert or undo the changes you made to the repo.

Here are some ways to revert changes:

Using git revert:

e Description: Creates a new commit that undoes the changes from a previous

commit.

e Usage:

git revert <commit-hash>

Using git reset:

e Description: Moves the current branch to a specified commit.

e Usage:

git reset --hard <commit-hash>

Chapter 4 13

Resolving issues with remote repositories

Asyou often synchronize your local repo with the remote repo, there are bound to be connectivity

issues at times during your interaction. Here are some common ones.
¢ Authentication problems:

e Ensure you have the correct credentials.

e Use SSH keys for authentication.
e Connectivity problems:

e Checkyour internet connection.

e Verify the remote repository URL with git remote -v.

Best practices for troubleshooting

Let us look at some best practices:

e Keeping commits small and frequent: Make small, incremental changes and commit
them frequently to minimize conflicts.
e Writing clear and descriptive commit messages: Use meaningful commit messages to

describe the changes made.

e Regularly pulling updates from the remote repository: Frequently pull updates to stay

in sync with the remote repository and avoid conflicts.

Great job! You have now mastered basic to intermediate knowledge of Git commands and work-
flows. Many of the commands here were treated in brief. Be sure to dive deeper into each of these
commands by reading the additional useful links at the end of this chapter and experiment a lot

with them on your own.

Let us summarize what we have learned.

Summary

We began by delving deeper into the layers of Git and GitHub. Initially, we dealt with the basic
concept of Git and experimented with a few Git commands from Lab I in Chapter 1. Then, we
went deeper by learning about some intermediate Git commands and flags. A flag is an extra
option or parameter appended to a command to modify its behavior, supply more context/data,
or influence its output. For example, in the git --version command, the --version flag told

the Git command to display the version number of Git installed.

114 Basic Git Commands and Workflows

We learned about and mastered several Git commands, such as setting up a repository with git
init, configuring repository settings using git config, editing files and checking the status with
git status, staging changes with git add, and committing changes with git commit. We also
discussed other common Git commands in an easy-to-understand way, such as fetching changes
from aremote repowith git fetch, cloning an existing repository with git clone,downloading

changes from others with git pull, and pushing changes with git push.

Additionally, we examined linking alocal Gitrepo to aremote repo with git remote add, creating
new branches with git branch, switching between branches with git checkout, and merging

changes between branches with git merge.

Finally, we considered some popular Git workflows, such as Git Flow, GitHub Flow, and trunk-

based development, and discussed troubleshooting common issues such as merge conflicts.

Test your knowledge

1. When setting up a new repo, which of the following Git commands do you need to run
to make the directory Git-aware?
a. git merge
b. mkdir

o

git init

git rebase
2. Which of the following branching models does not support short-lived branches?

a. GitHub Flow
b. GitFlow
c. Trunk-based development

3. Youmade some changesin your local branch and want to upload them to GitHub. Which

command should you use?

a. git pull
b. git push
c. git clone
d. git init

Chapter 4 115

4. Youwant to see a list of all the branches in your Git repository. Which command should

you use?

a. git status
b. git branch

o

git log
d. git checkout

Useful links

e GitReference: https://git-scm.com/docs
e GitHubflow: https://docs.github.com/en/get-started/using-github/github-flow

e Common Git Problems and Their Fixes: https://www.geeksforgeeks.org/common-git-

problems-and-their-fixes/

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://git-scm.com/docs
https://docs.github.com/en/get-started/using-github/github-flow
https://www.geeksforgeeks.org/common-git-problems-and-their-fixes/
https://www.geeksforgeeks.org/common-git-problems-and-their-fixes/
https://packtpub.com/unlock

Part 2

Collaborative
Development on GitHub

This part delves into advanced collaboration techniques on GitHub, enabling you to work
effectively with teams and contribute to projects. Upon completion, you will have a comprehensive
understanding of branching and merging strategies, pull requests, code reviews, and project
management tools on GitHub. This knowledge is essential for any collaborative software

development tasks.
This part of the book includes the following chapters:

e Chapter 5, Branching and Merging Strategies

e Chapter 6, Pull Requests and Code Reviews

e Chapter 7, Issues, Projects, Labels, and Milestones
e Chapter 8, GitHub Actions and Automation

e Chapter 9, Engaging with the Community through GitHub Discussions

Branching and Merging
Strategies

In the next few chapters, we will be focusing on collaborative development on GitHub. You will
learn advanced collaboration techniques, enabling you to work effectively with teams and con-

tribute to projects on GitHub.

In this chapter, we will delve into the branching model in Git and on GitHub, exploring various
strategies for creating, managing, and merging branches. This chapter emphasizes the importance

of awell-structured branching strategy for team collaboration. We will cover the following topics:

e Understanding branches in Git
e Merging and conflict resolution

e Branch management techniques

Let’s get right into it!

Understanding branches in Git

Let’s look at what branches are in Git and their purposes.

120 Branching and Merging Strategies

Introduction to branches
Branches are a fundamental concept in Git, allowing developers to diverge from the main

codebase and work on features, bug fixes, or experiments in isolation.

Branches enable parallel development by creating a separate line of development work. They help
in managing different versions of a project and facilitate collaboration among team members.
Usually, a branch is created from the default branch in a repo, which means it carries all the
history of its parent branch from which it was cloned. Therefore, a newly cloned branch and its

parent branch will have identical heads.

\G/\, Note

Ahead is the tip of a branch denoted by a named reference to the latest commit.
In Git, there is a subtle difference between a branch head and HEAD.

Note

\G/‘ HEAD is a special pointer that refers to the current branch or commit that you are

working on.

In other words, all branches have heads but there can only be one HEAD, which is the tip of the

current working branch.

Now, there are a few benefits that branching brings to collaboration. Let’s look at a few.

Benefits of using branches

Using branches in version control offers several significant benefits, especially in collaborative

development environments. Here are some key advantages:

e Parallel development and enhanced collaboration: It allows multiple developers to work
on different features simultaneously withoutinterfering with each other’s work. Multiple
branches enable parallel development, thereby increasing productivity and accelerating

the development process.

Chapter 5 121

¢ Isolation of work and safe experimentation: Branches allow developers to work on dif-
ferent features and bug fixes, or to experiment on an idea in isolation without affecting
the main codebase. This isolation helps prevent conflicts and ensures that incomplete or
unstable code does not disrupt the main project. If the work done is no longer required,
the branch can be deleted without any impact.

o Simplified code reviews: Branches facilitate code reviews by allowing developers to sub-
mit pull requests (we will talk more about pull requests in the next chapter, Chapter 6,
Pull Requests and Code Reviews) for specific branches. Reviewers can focus on the changes
in the branch, making the review process more manageable and thorough.

¢ Rollback capability: If a feature or change introduced in a branch causes issues, it can
be easily rolled back by reverting the branch or discarding it altogether. This rollback

capability ensures that the main codebase remains stable and reliable.

By leveraging these benefits, teams can improve their development processes, enhance code

quality, and collaborate more effectively.

Creating branches

Creating branches is a straightforward process in Git. You can create branches directly by running

git commands in the CLI, through the GitHub interface, or from your preferred IDE.

Using the git command

The basic command to create a branchis git branch <branch-name>. To create and switch to a

new branch simultaneously, use git checkout -b <branch-name>.

Using the GitHub website
From the GitHub.com interface on the web browser, you can create a branch using the following
steps:

1. Navigate to your repository: Go to the repository where you want to create a new branch.

2. Usethebranch dropdown: Click on the branch drop-down menu, which is usually labeled

with the current branch name (e.g., main or master).

122 Branching and Merging Strategies

3. Create a new branch: In the dropdown, type the name of your new branch in the text
box. You will see an option to create a new branch from the current branch. Click on the

option that says Create branch <branch-name> from <current-branch>.

(® Issues % Pullrequests () Actions [Projects

+ my-blank-repo Private

¥ main ~ ¥ 1Branch © 0 Tags

Switch branches/tags X
down @

[Q, my-new-name 1 l

Branches Tags

¥ Create branch my-new-name from main

View all branches

11T DiAalin TV

Figure 5.1: Creating a new branch on the GitHub Ul

Using the IDE

From the IDE, taking VS Code for instance, you can do this in one of two ways.

Using the VS Code interface

1. Open VS Code: Launch Visual Studio Code and open your project repository.

2. Open the Source Control view: Click on the Source Control icon in the activity bar on

the side of the window (it looks like a branch icon in the bottom-left corner).

Chapter 5 123

3. Open the branch menu: In the Source Control view, click on the branch name at the

bottom of the window (next to the checkmark icon). This will open the branch menu.

~ SOURCE CONT (OL GRAPH

@® Adjust braiding for Doctcom visuals A

Change query for new schema to use function...
Incroperate models from schema into Usage m...
Merge pull request #9 from github/data-table...
Clianged date from relative date to between...
Re-introduce Steffen's changes Ayo
Fixed averages in the visuals Ayo

1 Update Usage Metrics visuals to use new sch...

X 1 data-tables-feature & ®0A0 WO

Figure 5.2: Clicking on the branch name to launch the branch-related menu

4. Create a new branch: Select Create new branch... from the drop-down menu:

EH ct a branch or tag to checkout
~+ Create new branch...
+ Create new branch fror
J Checkout detached...
¥® data-tables-feature 9
2% alpha-product-enhancements «

° alpha-product-branding-changes 1

Figure 5.3: Selecting to create a new branch

5. Name your branch: Enter the name of your new branch and press Enter. VS Code will

create the new branch and switch to it automatically.

124

Branching and Merging Strategies

Using the Command Palette

1

3.

Open the Command Palette: Press Ctrl + Shift + P (or Cmd + Shift + P on macOS) to open
the Command Palette.

Use the Git: Create Branch command: Type Git: Create Branch and selectit from the

list of commands:

>create branc

Git: Create Branch From...

Git: Create Branch...

Terminal: Create New Terminal Starting in a Custom Working Directory
Ask GitHub Copilot: create branc

Figure 5.4: Creating a new branch using the Command Palette

Name your branch: Enter the name of your new branch and press Enter. VS Code will

create the new branch and switch to it automatically.

What is the best way to name your branch? We will look at some factors influencing nomencla-

ture in the next section.

Naming conventions and best practices

It’s important to follow consistent naming conventions for branches to avoid confusion. Using

a consistent naming convention for repository branches offers several benefits, particularly in

collaborative environments. Here are some key advantages:

Clarity and readability: Clear and descriptive branch names make it easier for team mem-
bers to immediately understand the purpose of each branch. This reduces confusion and

improves communication within the team.

Organization: Consistent naming helps keep the repository organized. It allows developers
to quickly locate and identify branches related to specific features, bug fixes, or releases.
Efficiency: When branch names follow a predictable pattern, it becomes easier to auto-
mate workflows and integrate with CI/CD pipelines. Scripts and tools can be configured
to recognize and handle branches based on their names.

Collaboration: Standardized branch names facilitate better collaboration by ensuring
that all team members follow the same conventions. This consistency helpsin managing

pull requests, code reviews, and merges more effectively.

Chapter 5 125

Tracking and management: Naming conventions aid in tracking the progress of differ-
ent tasks and managing the life cycle of branches. It becomes simpler to identify which

branches are active, which are ready for review, and which can be deleted.

Let us consider some good practices for naming branches:

Use prefixes: Use prefixes to categorize branches by their purpose. Common prefixes

include the following:

e feature/ for new features (e.g., feature/login-page)
e bugfix/ for bug fixes (e.g., bugfix/fix-login-error)
e hotfix/ for urgent fixes (e.g., hotfix/security-patch)

e release/ for release preparation (e.g., release/v1.0.0)

Use descriptive names: Choose descriptive names that clearly indicate the branch’s pur-
pose. Avoid using generic names such as dev or test.

Use hyphens or slashes: Separate words with hyphens or slashes to improve readability
(e.g., feature/user-authentication).

Avoid special characters: Stick to alphanumeric characters and hyphens. Avoid using
special characters or spaces in branch names.

Keep it short and simple: While being descriptive, try to keep branch names concise.
Long branch names can be cumbersome to work with.

Include issue or ticket numbers: If your project uses an issue tracker, include the issue or
ticket number in the branch name to link the branch to a specific task (e.g., feature/1234-
add-user-login).

Use a consistent case: Decide on a case convention (e.g., all lowercase) and stick to it for

consistency.

Here are some examples of naming conventions:

feature/add-user-authentication
bugfix/fix-login-error
hotfix/security-patch
release/v1.0.0
chore/update-dependencies

test/integration-tests

By following these best practices, you can ensure that your repository remains organized, your

workflows are efficient, and your team can collaborate effectively.

126 Branching and Merging Strategies

After creating your branch, you want to switch to that new branch to begin work.

Switching between branches

Switching between branches allows developers to move their working directory to a different
branch. The git checkout <branch-name> command is used to switch to an existing branch.

With Git 2.23 and later, git switch <branch-name> can also be used.

When you switch to a different branch in Git, several things happen to ensure your working

directory reflects the state of the branch you’re switching to. Here’s a breakdown of the process.

Updating the working directory

Git updates the files in your working directory to match the state of the branch you’re switching

to. This means the following:

e File changes: Any files that are different between the current branch and the target branch
will be updated. This includes adding new files, modifying existing files, and deleting
files that are not present in the target branch. If you open the repo’s directory in Finder
(mac0S) or Explorer (Windows) before and after switching between two branches that

are different, you will notice the change in the content despite opening the same path:

Before After

R FEADME M

Figure 5.5: Switching between branches changes the physical contents of the directory
to match

e Staging area: The staging area (index) is also updated to reflect the state of the target
branch.

Chapter 5 127

Preserving uncommitted changes
If you have uncommitted changes in your working directory, Git will handle them in one of two
ways:
e Clean working directory: If your working directory is clean (no uncommitted changes),
Git will switch branches without any issues.

e Uncommitted changes: If you have uncommitted changes, Git will attempt to apply them
to the new branch. If the changes can be applied cleanly, Git will switch branches. If there
are conflicts, Git will prevent the switch and prompt you to either commit, stash (this is

explained in the later section), or discard your changes.

Updating the branch pointer

Git updates the HEAD pointer to point to the new branch. The HEAD pointer indicates the current
branch you are working on. When you switch branches, the HEAD pointer is updated to reference

the latest commit on the target branch.
Stashing changes (optional)
If you have uncommitted changes that you want to keep but need to switch branches, you can

use the git stash command to temporarily save your changes. After switching branches, you

can apply the stashed changes using git stash apply.
Here are some example commands:

e Switching branches:

git checkout <branch-name>

e gt o>]

or
(git switch only works in Git version 2.23 and later.)

e Stashing changes:

git stash

git checkout <branch-name>

git stash apply

128 Branching and Merging Strategies

@ Quick tip: Enhance your coding experience with the AI Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

e(a, b) { 1 2
{sum: a + b};

& The next-gen Packt Reader is included for free with the purchase of this book. Scan
the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

E5HE

Switching branches in Git updates your working directory to reflect the state of the target branch,
preserves uncommitted changes if possible, and updates the HEAD pointer. This allows you to seam-

lessly move between different lines of development while maintaining the integrity of your work.

Developers often switch branches to review code, test features, or work on different tasks. Un-

derstanding when and why to switch branches is crucial for efficient workflow management.

http://packtpub.com/unlock

Chapter 5 129

When you are done with your development in the current working branch, you want to rein-
tegrate the changes you made to the main codebase in the default or source branch, preferably
after rigorous testing to be sure your new code will not introduce breaking changes to the main
codebase. The process of reintegrating your changes to the main codebase or trunk is called a

merge.

In the next section, we will examine different merge types, how to perform them, and how to

manage conflicts that may arise in the process.

Merging and conflict resolution

A merge is the process of combining the changes from one branch into another. This is a funda-

mental operation in version control that allows you to integrate different lines of development.

Types of merges
Understanding the different types of merges is essential for managing how changes are integrated

into the main codebase.

Merge commit
This is the default merge strategy in Git. It creates a new commit that combines the histories of
the merged branches. This method preserves the complete history of changes but can resultin a

more cluttered commit history. Combining the history is in two forms:

e Fast-forward merge: If the target branch has not diverged from the source branch, Git
simply moves the pointer of the target branch forward to the latest commit of the source
branch. This is a straightforward merge with no new commits created.

e Three-way merge: If the branches have diverged, Git performs a three-way merge. It uses
the common ancestor of the two branches and the latest commits from both branches to

create a new merge commit that combines the changes.

130 Branching and Merging Strategies

Squash merge

This is a merge strategy that combines all the commits from a feature branch into a single commit
before merging it into the main branch. This means that instead of seeing all the multiple com-
mits you made in your working branch, there will be only one commit in the target branch after the

merge. It simplifies the commit history, making it easier to follow, but loses the granular history

of individual commits. The following figure is a visual representation.

Git squash merge
. Before Merge
@Jg £ £ & .
& -»'.'-’9 -..';0 il
FA S8 &
& & VA &
main @ 3 ®—© @&
feature A branch s’f @ @ 2 @ L]
5 K o
Vi S S S A
&
& s -P§\ 3’@ &
& & &S & &
CA 54
main @ @ 9—0 @ &
feature A branch

All commits in the 'feature A' branch disappear
into one single commit in ‘main’ after merge

Figure 5.6: Only the merge commit is visible in the history of the target branch after the merge

Chapter 5 131

When performing a squash merge in Git, the commit message typically combines the commit
messages of all the individual commits being squashed into a single, consolidated message. This
helps provide context and a summary of the changes introduced by the feature or branch being

merged. Now, what will the commit message be?
Default commit message
By default, Git generates a commit message for a squash merge that includes the following:

e Title: A summary of the merge, usually indicating the branch being merged

e Listof squashed commits: A list of the commit messages from all the commits that were

squashed together
Let’s look at an example.

Suppose you have a feature/new-feature branch with the following three separate commits:

e Add initial implementation of new feature
. Refactor code for new feature

e Fix bug in new feature
When you perform a squash merge, the default commit message might look like this, butin one
single commit:

Merge branch 'feature/new-feature’

* Add initial implementation of new feature
* Refactor code for new feature

* Fix bug in new feature

Customizing the commit message

You can also customize the commit message during a squash merge to provide a more concise
or detailed summary. When you initiate the squash merge, Git opens your default text editor,

allowing you to edit the commit message before finalizing the merge.

132 Branching and Merging Strategies

Rebasing and merging
Rebasing replays the commits from the source branch onto the base/target branch, creating a
linear history. This method keeps the commit history clean but can be more complex and risky,

especially if conflicts arise during the rebase process. The following figure is a visual representation.

Git rebase
ﬁ\ Before Merge
& & P &
f ¥ \é\ At A ,\@a
& i £ F £
main @ & — @ ®

feature A branch e =] *e—0—90

s o @ @

ﬁf ,fb 0“6@ f d’é& f

main @ & *—e

feature A branch

All commits in the 'feature A' branch appear
in ‘main’ after merge

Figure 5.7: Commits from the source branch are replayed in the exact timelines onto the
target branch

Chapter 5

133

2, Quick tip: Need to see a high-resolution version of this image? Open this book in

the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader and a free PDF/ePub copy of this book are included

with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use

the search bar to find this book by name. Double-check the edition shown to make

sure you get the right one.

of

[

Key differences between squash merge and rebase merge

Here’s a table summarizing the key differences between rebase merge and squash merge:

Feature Rebase Merge Squash Merge

Purpose Replay commits from one branch onto | Combine all feature branch
another commits into one

Commit history | Preservesindividual commits Creates a single new commit
(rewritten)

Branch history Appears linear and clean Simplified, but loses granular

commit detail

Use case When maintaining a detailed commit | When wanting a clean,
history is useful summarized commit

Original Rewritten (new SHAS) Replaced with a new commit

commits

Conflict May need to resolve multiple times Conflicts resolved once during

resolution (per commit) squash

Final merge No merge commit; commits appear as | Single new commit added to target

commit if written linearly branch

Command git rebase main git merge --squash feature

example

Table 5.1: Differences between rebase merge and squash merge

http://packtpub.com/unlock

134 Branching and Merging Strategies

Performing merges

Executing merges correctly ensures that changes are integrated smoothly. This section will explain.

Commands for merging branches

The basic command for merging is git merge <branch-name>, which merges the specified
branch into the current branch. For squashing commits before merging, use git merge --squash

<branch-name>. To rebase, use git rebase <branch-name>.

Performing a regular merge

Here’s how you can perform a regular merge:

1. Switch to the target branch: git checkout main.

2. Merge:git merge feature/new-feature.

Performing a squash merge

Here’s how you can perform a squash merge:

1. Switch to the target branch: git checkout main.
2. Squash and merge: git merge --squash feature/new-feature.
3. Commit the squashed changes: git commit.

During the git commit step, Git will open the commit message editor with the default message,

which you can then edit as needed.

Performing a rebase

You can perform a rebase in four easy steps:

1. Switch to your feature branch: git checkout feature/new-feature.
2. Rebase onto the target branch: git rebase main.

3. Resolve any conflicts if they arise during rebasing.
4

Fast-forward or force-push your changes to update your remote branch (if necessary):

e Fast-forward push (if no conflicts):

git push origin feature/new-feature

e Force-push (if conflicts were resolved):

git push origin feature/new-feature --force

Chapter 5 135

Certification tip

\ 7/

@,

g certain conditions (e.g., you don’t want to retain the history of every commit in a

|
- You may be given a scenario in the exam where you are required to merge, given

change), and then asked to choose which merge type you need to achieve it.

There are some good practices to consistently ensure a clean merge.

Best practices for clean merges

Always ensure that your working directory is clean (i.e., no uncommitted changes) before start-
ing a merge. Regularly pull the latest changes from the main branch to minimize conflicts. Use

meaningful commit messages to document the purpose of the merge.

Sometimes, changes in the source and target branches overlap, leading to conflicts. It is not un-
common for another developer to have introduced changes and reintegrated since the time you
created your working branch. To move forward and complete the merge, you need to resolve the

conflict. Let us consider conflict resolution during a merge.

Conflict resolution

Merge conflicts occur when changes in different branches overlap. Here are a few recommenda-

tions for resolving conflicts:

o Identifying merge conflicts: Git will notify you of conflicts during a merge or rebase. Con-

flicted files will be marked, and you can use git status to see which files need attention.

e Strategies to resolve conflicts: Open the conflicted files and look for conflict markers
(¢<<<<<g, =======, >>>>>>>). Manually edit the files to resolve the conflicts, then stage
the resolved files with git add <file>.Finally, complete the merge with git commit or

the rebase with git rebase --continue.

e Tools and commands for conflict resolution: Git provides several tools to assist with
conflict resolution. Use git mergetool to launch a merge tool that can help visualize

and resolve conflicts. Popular merge tools include KDiff3, Meld, and Beyond Compare.

Note

V4 git mergetool is a Git command that allows you to use an external merge tool
\Q/ to resolve merge conflicts. When you encounter conflicts during a merge, git

mergetool helps you visualize the differences between conflicting files and pro-

vides a user-friendly interface to resolve these conflicts.

136 Branching and Merging Strategies

git mergetoollaunches a graphical or text-based merge tool that displays the conflicting chang-
es side by side. You can configure Git to use your preferred merge tool. Some merge tools offer
automated conflict resolution features, such as accepting all changes from one side or the other,

which can speed up the resolution process.
To use git mergetool, you must first configure your preferred merge tool.

You can set your preferred merge tool in your Git configuration. To do this, use the following git
config --global merge.tool <merge-tool-name> command, where merge-tool-name is the
name of the merge tool. For example, to set Meld as your merge tool, you can use the following

command:

git config --global merge.tool meld

When you encounter a merge conflict, Git will notify you and mark the conflicted files. Then, you

start the merge tool by running git mergetool.

The merge tool will open, displaying the conflicting changes. You can then manually resolve the
conflicts using the tool’s interface. Once you have resolved the conflicts, save the changes and

close the tool.

After resolving all conflicts, you need to stage the resolved files and complete the merge:

git add <resolved-file>

git commit

Some additional commands that are useful during a merge and that can help resolve conflicts

include the following:

e git reset:Used to undo changes by moving the HEAD and branch pointer to a previous
commit. It can be used to unstage changes (--soft), remove changes from the working
directory (--hard), or both.

e git revert: Creates a new commit that undoes the changes from a previous commit,

preserving the history.

Up next, we will explore how to manage branches effectively on GitHub.

Branch management techniques
Effective branch management is crucial for maintaining a clean and organized repository. This
section will cover how we can manage branches both on Git and GitHub. They are not inter-

changeable but are mutually beneficial.

Chapter 5 137

Managing branches in Git

Managing branches on Git is mostly operational:

e Listing branches: To view all branches in your repository, use the git branch command
forlocal branches and git branch -rforremotebranches. Thegit branch -acommand

lists both local and remote branches.

e Deleting branches: Once a branch is no longer needed, it can be deleted to keep the re-
pository tidy. Use git branch -d <branch-name> to delete alocal branch that has been
merged, or git branch -D <branch-name> (note the uppercase) to force-delete a branch.

For remote branches, use git push origin --delete <branch-name>.

Now let’s see how you can manage branches on GitHub. GitHub offers a more robust set of features.

Branch protection rules on GitHub

Branch protection rules help ensure that the code in important branches remains stable and secure.
Protecting branches prevents direct pushes and accidental deletions, enforces code reviews, and
ensures that all changes meet the required standards before being merged. This is particularly

important for branches such as main or master.

On GitHub, you can set up branch protection rules by navigating to the repository Settings tab
under Branches. Options include requiring pull request reviews, enforcing status checks, and

restricting who can push to the branch:

(@ Issues I Pullrequests (2 Actions [Projects () Security |~ Insights 8 Settings

%1 General Branch protection rules

Access
Classic branch protections have not been configured

Define branch rules to disable force pushing, prevent branches from being deleted, or reguire pull reg
ngd pr

A Collaborators %)

merging. Learn more t repositony otected branches

Code and automation
I ¥ Branches
© Tags ‘\\

Figure 5.8: Branch protection rules on GitHub

Add branch ruleset Add classic branch protection rule

Select Add branch ruleset to reveal the configuration screen.

Here are some key rulesets supported.

138 Branching and Merging Strategies

Require a pull request before merging

This rule mandates that one or more team members review the code changes before they can be
merged into the protected branch. You can specify the number of required reviewers and whether

they must be code owners.

Benefit: It ensures that at least one other team member reviews the code before it is merged,

promoting code quality and collaboration.

Require status checks to pass
This rule requires that all specified status checks pass before a pull request can be merged. Status

checks can include automated tests, code quality checks, and CI/CD pipeline results.

Benefit: It mandates that all required status checks (such as CI/CD pipelines) pass before merging,

ensuring that the code meets predefined quality standards.

Require conversation resolution before merging

This rule ensures that all comments and discussions on a pull request are resolved before it can

be merged. All conversations marked as unresolved must be addressed.

Benefit: It ensures that all comments and discussions on a pull request are addressed, fostering

thorough code reviews and communication.

Require signed commits

This rule requires that commits are signed with a GPG or S/MIME key. Only commits with verified

signatures are allowed.

Note

V4 Signing a commit with a GNU Privacy Guard (GPG) or Secure/Multipurpose Inter-
\@/ net Mail Extensions (S/MIME) key is a way to verify the authenticity and integrity
of the commit. It ensures that the commit was made by a trusted source and has

not been tampered with.

Benefits:
e Security: It ensures that commits are made by trusted contributors and have not been
tampered with

e Accountability: It provides a clear record of who made each change, which is especially

useful in collaborative projects

e Trust: It builds trust in the codebase by verifying the identity of committers

Chapter 5 139

Require linear history
This rule enforces a linear commit history, avoiding merge commits. Only rebase and squash

merges are allowed.

Benefit: It enforces a linear commit history, avoiding merge commits and making the project

history cleaner and easier to follow.

Require merge queue

This rule manages the order of merges to ensure that all required checks are rerun in the correct

sequence. Pull requests are added to a queue and merged in order.

Note

\/V A merge queue is another great feature GitHub offers for seamless integrations of
code at scale. We will talk more about this in the next chapter, Chapter 6, Pull Requests

and Code Reviews.

Benefit: It manages the order of merges to ensure that all required checks are rerun in the correct

sequence, maintaining the stability of the main branch.

Require deployments to succeed
This rule ensures that the code has been successfully deployed in a staging environment before

itis merged. Deployment status checks must pass. This is beneficial to CI/CD processes.

Benefit: It ensures that the code has been successfully deployed in a staging environment before

itis merged, reducing the risk of deployment issues.

Lock branch

This rule prevents any changes to the branch, ensuring that it remains stable and unchanged until
explicitly unlocked. Only administrators can unlock the branch. For instance, you might want to
lock a release branch once it is in production so that you will always have a working version of

that release version to come back to in the future without disrupting the main branch.

Benefit: It prevents any changes to the branch, ensuring that it remains stable and unchanged

until explicitly unlocked.

Do not allow bypassing the above settings

This rule ensures that the branch protection rules that have been configured are strictly enforced,

even for administrators. No one can bypass the rules.

140 Branching and Merging Strategies

Benefit: It ensures that the branch protection rules are strictly enforced, even for administrators,

maintaining the integrity of the branch.

Restrict who can push to matching branches

This rule limits the users who can push to the branch. You can specify individual users or teams

who have push access.
Benefit: It limits the users who can push to the branch, reducing the risk of unauthorized changes.
Other rules include restricting creations, deletions, or updates of branches:

Branch rules

|| Restrict creations
Only allow users with bypass permission to create matching refs.

| | Restrict updates
Only allow users with bypass permission to update matching refs.

Restrict deletions
Only allow users with bypass permissions to delete matching refs.

|| Require linear history
Prevent merge commits from being pushed to matching refs.

[Require deployments to succeed
Choose which environments must be successfully deployed to before refs can be pushed into a ref that matches this rule.

|| Require signed commits
Commits pushed to matching refs must have verified signatures.

|_| Require a pull request before merging
Require all commits be made to a non-target branch and submitted via a pull request before they can be merged,

| | Require status checks to pass
Choose which status checks must pass before the ref is updated. When enabled, commits must first be pushed to another ref
where the checks pass.

Block force pushes
Prevent users with push access from force pushing to refs.

|| Require code scanning results
Choose which tools must provide code scanning results before the reference is updated. When configured, code scanning must
be enabled and have results for both the commit and the reference being updated.

Figure 5.9: Cross-section of available branch protection rules

All these rules can be configured to target specific branches or all branches.

Chapter 5 141

Targeting branches

You can decide which branches you want to make a ruleset for. Branch targeting determines which
branches will be protected by the ruleset. These branches can be explicitly named or dynamically
inferred through some targeting criteria:

Target branches

Branch targeting determines which branches will be protected by this ruleset. Use inclusion patterns to expand the list
of branches under this ruleset. Use exclusion patterns to exclude branches.

Branch targeting criteria Add target -

® Include default branch

Branch targeting has not been configured @ Include all branches

Target by inclusion or exclusion pattern

@ Include by pattern

Rules (®) Exclude by pattern

Figure 5.10: Branches can be targeted explicitly or dynamically

On GitHub, you can dynamically target branches in a branch ruleset using patterns with the
fnmatch syntax. This allows you to apply rules to branches that match specific naming patterns,

making it easier to manage rules across multiple branches without having to specify each one
individually.

There are two options for dynamically targeting branches:

¢ Include by pattern: Branches that match the pattern specified will be targeted

e Exclude by pattern: Branches that match the pattern will not be targeted

About the patterns, let’s go a little deeper into understanding the fnmatch syntax.

Using the fnmatch syntax

The fnmatch syntax supports wildcards and patterns to match branch names. Here are some

common patterns you can use:
e Wildcard (*):
e Matches any string of characters except for the directory separator (/)
e Example: feature/* matches feature/branchl, feature/branch2,etc.
e Double asterisk (**):

e Matches any string of characters, including directory separators.

o Example: release/** matches release/v1.0, release/v1.0/patchi,etc.

142 Branching and Merging Strategies

e Question mark (?):
e Matches any single character

e Example: bugfix/? matches bugfix/a, bugfix/b, etc.

Certification tip
\ ! 7/

g

A question might list different fnmatch wildcard and pattern combinations in its

answers, and you may be asked to choose which fnmatch syntax best interprets
the question.

Steps to configure dynamic branch targeting
Follow these steps from within the Add branch ruleset configuration screen:

1. Define the branch name pattern:

a. Within the Target branches section and on the Branch targeting criteria box,

click on the Add target dropdown (see Figure 5.10).
b. Select Include by pattern or Exclude by pattern.

c. IntheBranch naming pattern field, enter your pattern using the fnmatch syntax.

The following example targets all branches starting with feature/, enter feature/*.

oty

Include by pattern X

Branches that match the matching pattern
will be targeted by this ruleset

Targets

Branch naming pattern

Which branches do [@ feature/*]
Example patterns: "main®, "releases/**/*",

Target branChE "users/***". Learn more about fnmatch,

Branch targeting de ruleset, Use inclusion patterns to expand the list

of branches under t Cancel Add Inclusion pattern iches.

Branch targeting criteria Add target -

Branch targeting has not been configured

Figure 5.11: Dynamically targeting branches by the fnmatch pattern

Chapter 5 143

2. Configure the protection rules:

a. Set the desired protection rules (e.g., require pull request reviews, status checks,

etc.).

b. Save the changes.
Here are some example patterns:

e main: Targets the main branch specifically
e release/*: Targets all branches that start with release/
e hotfix/**: Targets all branches that start with hotfix/ and include any subdirectories

e *:Targets all branches in the repository
Here are some benefits:

e Scalability: Easily apply rules to multiple branches without manually specifying each one
e Consistency: Ensure consistent rules across branches that follow a naming convention

e Flexibility: Adapt to different branch naming schemes and project structures

Configuring the default branch

We might have mentioned this before but in case we didn’t, here it is. A default branch is the
primary branch of a repository. It is the branch that GitHub displays when someone visits the
repository, and it is the initial branch that Git checks out locally when someone clones the repos-

itory. Typically, this is where the production codebase resides.

Historically, default branches in Git repos have been named master or main. However, nothing

stops you from changing this.
To configure or change the default branch for a repository, follow these steps:
1. Navigate to the repository Settings tab:

a. Go to your repository on GitHub.

b. Click on the Settings tab.
2. Access the branch settings:

a. Intheleft sidebar, click on Branches.

144 Branching and Merging Strategies

3. Change the default branch:

a. Under the Default branch section, you will see the current default branch name.

b. Click the drop-down menu next to the default branch name and select the branch

you want to set as the new default.

c. Click Update.
4. Confirm the change:

a. Read the warning message that appears, as changing the default branch can affect

open pull requests and local clones.

b. Ifyouunderstand theimplications, click Iunderstand, update the default branch.
You can also set the default branch name for all new repositories you create:
1. Go to your account settings:

a. Intheupper-right corner of any GitHub page, click your profile photo, then click
Settings.

2. Access the repository settings:
a. Inthe Code, planning, and automation section of the sidebar, click Repositories.
3. Change the default branch name:

a. Under the Repository default branch section, enter the desired default branch

name in the text field and click Update.

This will apply to any new repositories you create. Alternatively, if you wish to change it for just
one existing repository, follow these steps:

1. Click Settings from the horizontal menu on the repository you wish to modify.

2. Go to General from the left-hand navigation.

3. Under the Default branch section, click the pencil icon f to edit.

4

Enter the new name and click Rename branch.
Benefits of setting a default branch
Here are some benefits of setting the default branch:

e Consistency: Ensures a consistent starting point for all collaborators

e Clarity: Makes it clear where the main development happens

Chapter 5 145

e Automation: Many CI/CD tools and workflows are configured to work with the default

branch

Collaborative branch management

Collaboration is a key aspect of modern software development. Let’s briefly explain a few tips for

improving collaborative management:

e Strategies for team collaboration: Effective collaboration involves clear communication
and well-defined workflows. Teams often use feature branches for new features, bugfix

branches for bug fixes, and release branches for preparing production releases.

e Pullrequests and code reviews: Pull requests (PRs) are a GitHub feature that facilitates
code reviews and discussions before merging changes into the main branch. This process
helps maintain code quality and encourages knowledge sharing among team members.

In the next chapter, Chapter 6, Pull Requests and Code Reviews, we will discuss this in detail.

Perfect! This marks the end of our chapter. Let’s summarize the amazing things we discussed.

Summary

In this chapter, we focused on collaborative development on GitHub, exploring advanced tech-
niques to work effectively with teams. We delved into the branching model in Git and on GitHub,

emphasizing the importance of a well-structured branching strategy for team collaboration.

We started by understanding branches in Git, which allow us to diverge from the main codebase
to work on features, bug fixes, or experiments in isolation. Branches enable parallel development,
helping us manage different versions of a project and collaborate efficiently. We discussed the
benefits of using branches, such as enhanced collaboration, isolation of work, simplified code

reviews, and rollback capability.

Next, we covered the process of creating branches using the git command, the GitHub website,
and IDEs such as VS Code. We also highlighted the importance of consistent naming conventions

for branches to avoid confusion and improve collaboration.

Switching between branches is another crucial aspect we explored. We explained how to update
the working directory, preserve uncommitted changes, and update the branch pointer. We also

discussed the process of stashing changes if needed.

In addition, we examined merging and conflict resolution. We described different types of merges,
such as merge commits, squash merges, and rebase merges. We provided best practices for clean

merges and strategies for resolving conflicts that may arise during the merge process.

146 Branching and Merging Strategies

Finally, we looked at various ways to manage and configure branches, including administering

on Git, as well as protecting branches on GitHub using feature-rich protection rulesets.

By following these strategies and best practices, we can improve our development processes,
enhance code quality, and collaborate more effectively on GitHub. Up next, we will cover how to
getyour code peer-reviewed through a now well-established concept we call pull requests. Strap

your seat belt for another exciting chapter.

Test your knowledge
1. Whatis the primary benefit of using branches in Git for collaborative development?
a. Itallows developers to work on different features simultaneously without inter-
fering with each other’s work
b. Itsimplifies the commit history by combining all commits into a single commit

c. Itensures that the main codebase remains stable and reliable by preventing any

changes
d. Itautomatically resolves conflicts between different branches
2. Which command is used to create and switch to a new branch simultaneously in Git?

git branch <branch-name>

a
b. git checkout <branch-name>

o

git checkout -b <branch-name>

d. git switch <branch-name>
3. Whatis a squash merge in Git?

a. A merge strategy that combines the histories of the merged branches without

creating a new commit

b. Amerge strategy that combines all the commits from a feature branch into a single

commit before merging it into the main branch

c. Amerge strategy that replays the commits from the source branch onto the base/

target branch, creating a linear history

d. Amerge strategy that automatically resolves conflicts between different branches

Chapter 5 147

Useful links

e Githead and HEAD: https://git-scm.com/docs/gitglossary#def head

e Managing a branch protection rule: https://docs.github.com/en/repositories/
configuring-branches-and-merges-in-your-repository/managing-protected-
branches/managing-a-branch-protection-rule

e Using the fnmatch syntax: https://docs.github.com/en/repositories/configuring-
branches-and-merges-in-your-repository/managing-rulesets/creating-rulesets-
for-a-repository#using-fnmatch-syntax

e Changing the default branch: https://docs.github.com/en/repositories/
configuring-branches-and-merges-in-your-repository/managing-branches-in-

your-repository/changing-the-default-branch

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://shorturl.at/Pabky
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-protected-branches/managing-a-branch-protection-rule
https://shorturl.at/O71FR
https://shorturl.at/O71FR
https://shorturl.at/O71FR
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-branches-in-your-repository/changing-the-default-branch
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-branches-in-your-repository/changing-the-default-branch
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-branches-in-your-repository/changing-the-default-branch
https://packtpub.com/unlock

Pull Requests and Code
Reviews

Welcome to the more exciting part of GitHub — pull requests. g7

In the world of collaborative software development, the pull request (PR) process stands as a
cornerstone for maintaining code quality and fostering teamwork. This chapter delves into the
intricacies of pull requests and code reviews on GitHub, providing you with the tools and knowl-

edge necessary to navigate this essential workflow effectively.

As we explore the process, you’ll learn how to conduct effective code reviews that not only enhance
the quality of the code but also promote a culture of constructive feedback within your team. By
mastering these skills, you will gain the confidence to integrate changes safely, ensuring that

your projects remain robust and maintainable.

Get ready to dive into the world of pull requests and code reviews, where collaboration meets

quality assurance and every line of code counts!
We will cover the following main topics:

e Whatis a pull request?

e The pull request lifecycle

e Lab 6.1: Conducting a code review with a pull request
e Conducting effective code reviews

e Integrating changes with confidence

150 Pull Requests and Code Reviews

Technical requirements

For the labs in this chapter, you will need the following:

e A working computer with Git installed
e Themy-blank-repo created in Lab 3.1in Chapter 3 and last updated in Lab 4.1in Chapter 4

e Youwill also need a second GitHub individual account that will be used as a reviewer of

code

What is a pull request?

The concept of the pull request was popularized by GitHub. You could say GitHub invented this
idea, launching this feature way back in February 2008 (https://github.blog/news-insights/
the-library/oh-yeah-there-s-pull-requests-now/).Itwas designed to facilitate the process
of merging code changes. A pull requestis a request to merge code changes from one branch into
another, typically from a feature branch into the main branch. It facilitates code review and dis-
cussion, ensuring that all changes are vetted before becoming part of the project. A pull request
allows developers to notify other team members maintaining the repo that their work is ready

to be reviewed and can be merged after a successful review.

APRismore than just a request to merge code; it represents a dialogue between developers, where
ideas are exchanged, improvements are suggested, and code is refined. Understanding the pull
request lifecycle is crucial, as it encompasses everything from the initial creation of a PR to the

final integration of changes into the main codebase.

Importance in collaborative development

In a team environment, pull requests promote transparency and collaboration. They
\/‘/' enable team members to review each other’s work, share knowledge, and maintain

high code quality, ultimately leading to more robust and maintainable software.

Pull requests are now a household feature, common to most modern version control

systems, particularly Git-based platforms.

But before them, what were teams using? Let’s discuss this in the next section.

How was code managed before pull requests existed?

Before pull requests, code management relied on various practices and tools for collaboration

and version control. Here are four key methods that were used:

https://github.blog/news-insights/the-library/oh-yeah-there-s-pull-requests-now/
https://github.blog/news-insights/the-library/oh-yeah-there-s-pull-requests-now/

Chapter 6 151

Version control systems (VCSs):

e Concurrent Versions System (CVS): An early VCS that allowed multiple developers to

work simultaneously but lacked modern features such as branching

e Subversion (SVN): More popular than CVS, SVN improved branching and merging but

still required manual code reviews

Manual code reviews:

e Email and patch files: Developers sent code changes as patch files via email, leading to

potential miscommunication

e In-person reviews: Teams discussed code changes in meetings, which fostered collabo-

ration but was time-consuming

Branching and merging:

e Localbranches: Developers created local branches for features, merging changes manually,

often resulting in conflicts

e Centralized repositories: Teams pushed changes to a single server, complicating conflict

management

Documentation and change logs:
e Changelogs: Maintained to document changes, requiring discipline for consistency

e Commit messages: Used but often lacked clarity, relying on memory for context

In the next section, we will look at the lifecycle of a pull request.

The pull request lifecycle

Now let us go through a typical review process for a developer who has just finished making some

changes in their development branch. On GitHub, you create a pull request.

Creating a pull request

Creating a pull request is a straightforward process, but following best practices can enhance

clarity and effectiveness. Here’s a step-by-step guide on initiating a pull request:

1. Complete your changes: Ensure your feature or bug fix is ready in a separate branch.
2. Push your branch: Push your changes to the remote repository on GitHub.

3. Openapull request: Navigate to the repository on GitHub, click on the Pull requests tab,

and select New pull request.

152 Pull Requests and Code Reviews

4. Selectbranches: Choose the base branch (usually the main branch) and compare it with

your feature branch.
5. Fillin details: Provide a clear title and a detailed description of the changes made, includ-

ing any relevant context or issue references.

Before we talk about the code review process itself, let’s discuss the concept of a diff.

What is a diff?

A diff (short for “difference”) is a tool or format used to show the changes between two versions
of afile or codebase. In the context of version control systems such as Git, a diff highlights what

has been added, removed, or modified between commits, branches, or even individual files.
Key points about diffs:

e Comparison: Diffs allow you to compare different versions of files, making it easier to see

what changes have been made over time

e Format: Typically, a diff will display lines that have been added with a + sign and lines
that have been removed with a - sign

e Usage: Diffs are commonly used in code reviews, pull requests, and when merging changes

to ensure that the modifications are clear and understandable

o Example: If you modified a line in a code file, a diff might show the following:

readme.md
=) 1 —01ld line of code.

+ ® 1+ New line of code.

Figure 6.1: Visual representation of a diff

This visual representation and color coding help developers quickly identify changes and under-

stand the evolution of the codebase.

Certification tip

\ 7/

|
/@\ You may be given a visual representation of a diff and choose from the options what

the final line of code will be.

Now let us talk about some good practices to consider when raising a PR.

Chapter 6 153

Good practices for writing clear descriptions

I would recommend the following good practices when creating a pull request:

e Beconcise butinformative: Summarize what the changes do and why they are necessary.
e Usebullet points: Highlight key changes or features for easy readability.

e Referenceissues: Link to any related issues or discussions to provide context. To reference
issues on GitHub, use the hashtag (#) followed by the issue number. This will automati-
cally link the issue once the PR is created/updated. We will try this outin the lab exercise
in this chapter.

Review process overview

The review process is crucial for maintaining code quality and fostering collaboration among
team members, particularly when maintaining a large codebase. The roles involved in the review

process are typically as follows:

e Author: The developer who created the pull request and is responsible for addressing
feedback

e Reviewers: Team members who assess the code changes, provide feedback, and approve

or request modifications
e Maintainers: Often project leads or senior developers who oversee the merging process
and ensure adherence to project standards
In terms of timeline and expectations, three things should be considered:
¢ Initial review: Reviewers should aim to provide feedback within a reasonable timeframe,
typically within a few days

e Iterative feedback: Authors may need to make several revisions based on reviewer com-

ments, fostering an iterative dialogue

Note

\/V One great thing about GitHub’s pull request is that it tracks everything vi-
sually in a single timeline — the commits, the comments/reviews, and all

other work related to the PR.

e Final approval: Once all feedbackis addressed and the code meets the project’s standards,

the pull request can be approved and merged

154 Pull Requests and Code Reviews

Understanding the pull request lifecycle is essential for effective collaboration in software de-
velopment. By mastering the creation and review of pull requests, developers can contribute to

a culture of quality and teamwork, ensuring that every change enhances the project.

Before we go into the lab, the following diagram illustrates the flow of a typical code review pro-

cess. This will help you visualize what steps each person takes.

Marg ol maunat b e tatart ™
= getining S — { oo
| dimapmer s

__ { ovem Cranges ‘ 3 &

recir?

Figure 6.2: Flow diagram of the code review process between Developer A and Reviewer B

2, Quick tip: Need to see a high-resolution version of this image? Open this book in

the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader and a free PDF/ePub copy of this book are included
with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use
the search bar to find this book by name. Double-check the edition shown to make

-(u)- sure you get the right one.

In the preceding flow diagram, the yellow box is a critical decision point at which Reviewer B
determines whether the code changes have satisfied the requirements for a merge. If not, the
loop cycle around the yellow decision box continues until no more changes are required. Once
the review is complete and the change is approved, it can then the merged to the trunk branch

(green box) to mark the end of the pull request and review cycle.

Let us now see this in practice in the following lab exercise.

https://packtpub.com/unlock

Chapter 6 155

Lab 6.1: Conducting a code review with a pull request

Grab a coffee or tea! This lab exercise may take you some time. Let’s go!

In this lab, we will make some code changes, submit them for review by creating a pull request,
and go through the review process to have it approved before merging it into the main/produc-

tion branch.

Step 1: Create a new GitHub user for review

1. Signup for GitHub: Before we go on, we need at least two GitHub individual accounts. If
you don’t have a second account to use, go to GitHub and create an additional individual
account. You can watch the Chapter 2, Lab 2: Signing up for a GitHub account video. This

will be your reviewer account. Creating a GitHub account is free.

2. Verify your email: Follow the instructions in the verification email to activate your account.

O

Here's your GitHub launch code, @ayooutlook!

e i)

Continue signing up for GitHub by entering the code
below:

87577753

Once completed, you can start using all of GitHub's features to explore, build,

and share projects.

Not able to enter the code? Paste the following link into your browser:
https://github.comfusers/ayooutlook/emails/196249568/confirm_verification/87
577753%via_launch_code_email=true

Figure 6.3: Verify new GitHub account email to complete registration

156 Pull Requests and Code Reviews

For this lab, let us call your first GitHub account Developer A, and we will call the newly created

account Reviewer B.

Step 2: Invite a collaborator

1. AsDeveloper A, navigate to your repository:

a. Click on your profile icon in the top-right corner.
b. Select Your repositories from the drop-down menu.

c. Click on the repository you want to add a collaborator to.
2. Go to Settings:

a. In your repository, look for the Settings tab (usually found on the right side of

the menuy):

=] O ayo-creator [my-blank-repo &

<> Code (%) lssues ') Pullrequests (3 Actions [Projects (D Security |~ Insights || &2 Settings

W my-blank-repo Frivate @
F main -~ F 1Branch © Tags C} Gotofile t Add file -
W ayo-creator Enrich my README with markdown = fhEe162 - 3 manths aga 0}
™ RFANMF md Farich my RFADMF with markdown am

Figure 6.4: Settings tab on the repository menu

Chapter 6 157

3. Select Collaborators:

a. In the left sidebar, click on Collaborators (if you are using an Org-scoped repo,

the menu you see here will display as Collaborators and teams):

O ayo-creator /| my-blank-repo &

ode (&) Issues 19 Pull requests ¢ Actions [

l £33 General

R Collaborators]

Code and automation

¥ Branches

© Tags

E+ Rules ~
® Actions ~

& Webhooks
O Codespaces

3 Pages

Figure 6.5: Collaborators menu in Settings

158 Pull Requests and Code Reviews

4. Invite a collaborator:

Click on the Add people button.

b. Inthe search box, type the GitHub handle (username) of Reviewer B:

Whn has accecs

-

Add a collaborator to my-blank-repo

Search by username, full name, or email

[Q, ayooutlook]]

ayooutlook

“ :
Invite collaborator k

Figure 6.6: Select collaborator from the search result
5. Send invitation:

a. Clickon Add <username> (where <username> represents the handle of Reviewer
B. This will send an invitation to Reviewer B.
b. Reviewer B will receive an email notification and must accept the invitation to

gain access.

Chapter 6 159

c. Inthe email sent to Reviewer B, click the View invitation button in the email:

GitHub

[|
@ayo-creator has invited you to collaborate on the
ayo-creator/my-blank-repo repository

You can accept or decline this invitation. You can also visit @ayo-creator to learn a bit
more about them.

This invitation will expire in 7 days.
——— e

Note: This invitation was intended for ayodeji.ayodele@outlook.com. If you were not
expecting this invitation, you can ignore this email. If @ayo-creator is sending you too many
emails, you can block them or report abuse.

Getting a 404 error? Make sure you're signed in as ayooutlook.

Button not working? Copy and paste this link into your browser:
https://github.com/ayo-creator/my-blank-repo/invitations

Figure 6.7: Sample invitation email

160 Pull Requests and Code Reviews

6. Acceptinvitation:

a. Log in to the ensuing web page launched from the previous step as Reviewer B

and click on Accept invitation:

T R

ayo-creator invited you to collaborate

Accept invitation Decline

& Owners of my-blank-repo will be able to see:

e Your public profile information

¢ Certain activity within this repository
e Country of request origin

e Your access level for this repository
e Your IP address

Is this user sending spam or malicious content?
Block ayo-creator

Figure 6.8: Accept the invitation to collaborate

b. Once accepted, you'll see their username listed under the Manage access section
for Developer A.

Chapter 6 161

Multi-account support

GitHub supports logging in to multiple accounts in the same browser. You
can alternate between different GitHub accounts that you are signed in to
using the account switcher. You can find the account switcher in the context
menu when you click on your avatar, helping you easily switch between user

accounts without re-entering your credentials.

o

|
“ ayo-creator

£ |
Switch account

, ayooutlook
- % Fork 0
A% Add account
[+ Signout...
About

[Your projects

This was left blan % Your stars

Figure 6.9: GitHub account switcher

Step 3: Clone the repository

Now, let’s clone the repo. This must be performed by Developer A:

1. Open Terminal or Command Prompt.

2. Clone the my-blank-repo repository:

git clone https://github.com/<your-username/my-blank-repo.git

(Feel free to use any IDE of choice instead of the CLI.)

@ @ = my-blank-repo — -zsh — 102x35
recordingartist@Ayodejis—MacBook-Pro ~ % cd documents |
‘recordingartist@Ayodejis-MacBook-Pro documents % cd my-repos—home |
‘recordingartistPAvodejis-MacBook-Pro my-repos—home % git clone https://github.com/ayo-creator/my-blank]
—repo.git

Cloning into 'my-blank-repo'...

remote:
remote:
remote:
remote:

Enumerating objects: &, done.

Counting objects: 1@e% (&6/6), done.

Compressing objects: 180% (4/4), done.

Total 6 (delta B), reused @ (delta 8), pack-reused @ (from 8)

Receiving objects: 188% (&6/6), done.
recordingartist@Ayodejis-MacBook-Pro my-repos—home %

Figure 6.10: A local clone of my-blank-repo

162 Pull Requests and Code Reviews

3. Navigate to the repository:

cd my-blank-repo

Step 4: Make code changes

1. Create a new branch:

heckout -b add-sim

2. Create a new file — for example, create a file named hello_world.py:

t("Hello, World!")"' > hello_world.py

3. Stage thefile:

git hello_world.py

4. Commit the changes:

git commit -m "Add hello world.py"

5. Push the new branch:

git push origin add-simple-file

) [= my-blank-repo — -zsh — 102x35

remote: Total & (delta @), reused @ (delta ©), pack-reused @ {(from @)

Receiving objects: 1@e% (6/6), done.

recordingartist@Ayodejis-MacBook-Pro my-repos—home % cd my-blank-repo
|recordingartist@Ayodejis-MacBook-Pro my-blank-repo % git checkout -b add-simple-file |
Switched to a new branch 'add-simple-file'
|recordingartist@®Ayodejis-MacBook-Pro my-blank-repo % echo 'print{"Hello, World!")'> hello_world.py
recordingartist@Ayodejis-MacBook-Pro my-blank-repo % git add hello_world.py |
[recordingartist@Ayodejis-MacBook—Pro my-blank-repo % git commit -m "Add hello world python file hello_
world.py" |
[add-simple-fTile a293@ce] Add hello world pythen file helleo_world.py

1 file changed, 1 insertion(+)

create mode 188644 hello_world.py

recordingartist@Ayodejis-MacBook-Pro my-blank-repo % git push origin add-simple-file

Enumerating cbjects: &, done.

Counting objects: 1e8% (&4/4), done.

Delta compression using up to 1@ threads

Compressing objects: 108% (2/2), dona.

Writing objects: 1@@% (3/3), 324 bytes | 324.90 KiB/s, done.

Total 3 (delta @), reused @ (delta @), pack-reused @ (from @)

remote:
remote: Create a pull request for 'add-simple-file' on GitHub by visiting:
remote: https://github.com/ayo-creator/my-blank-repo/pull/new/add-simple-file
remote:
To https://github.com/ayo-creator/my-blank-repo.git
* [new branch] add-simple-file -> add-simple-file

L_recomingartist@Ayodejis-MacBook—Pro my-blank-repo % [l

Figure 6.11: Push code changes to remote origin

Chapter 6 163

Step 5: Create a pull request
1. While signed in as Developer A, go to your repository on GitHub. You will notice a yellow

banner at the top showing that some changes to a branch have just been discovered.

GitHub auto-detects recent changes to a branch and suggests a pull request to you:

O ayo-creator | my-blank-repo & Q Type

ode () lssues 17 Pullrequests (%) Actions [Projects () Security |~ Insights 1 Settings

4 my-blank-repo Friate & Unwatch 1

' add-simple-file had recent pushes 3 seconds ago Compare & pull request
¥ main - ¥ 1Branch [Tags Q Gotofile t Add file -

-i ayo-creator Enrich my README with markdown 3 hEe162 - 3 months age Y1) 2 Commits

[9 README.md Enrich my README with markdown 3 manths ago
Figure 6.12: Compare & pull request shows in a yellow banner

2. Click on Compare & pull request.

3. Ensure that you have the main branch selected in the dropdown on the left-hand side
(destination) and the add-simple-file branch on the right (source). The branch you are
merging from should be on the right:

= o ayo-creator | my-blank-repo & Q' Type

<> Code (3 issues [l Pullrequests (2 Actions [Projects (0 Secwsity |~ Insights @ Settings

Comparing changes

Choose two branches to see what's changed or to start a new pull request, If you need to, you can also compare acress forks or learn more about diff comparisons.

U] basemain™ % compare: add-simple-file ¥ | . Able to merge. These branches can be automatically merged

Discuss and review the changes in this comparison with others. Learn about pull requasts Create pull request

-o- 1 commit [E) 1 file changed A1 contributor

<0 Commits on Nov 3, 2024

Add hello world pythan file hello_world.py 2 a2s3mce <
Ayodei Ayadais commitied 1 hour sgo

Shawing 1 changed file with 1 addition and 0 deletions, Split | Unitied

vim hello_world.py (0

B2 -0, 41 88

1 o« print[“Heila, World!")

Figure 6.13: Compare branch and the base branch in a pull request

164

Pull Requests and Code Reviews

GitHub will make a quick assessment, displaying a diff between the compare branch
(source) and the base branch (destination) and then adding a green tick at the top if you
are “able to merge”. This means there are no conflicts with the changes you’re introducing,
were they to be merged.

Add a title and description: Provide a brief description of the changes under the Add a
title and Add a description fields.

On the right-hand side, click on the gear icon (£3) next to Reviewers. A dropdown of users
should open. Search for and select Reviewer B’s handle.

Click on Create pull request. Reviewer B should get an email notification that Developer

A requested their review.

Step 6: Conduct a code review

1.

Switch to the reviewer account (Reviewer B) by using the account switcher or log in with
the new GitHub user you created if not already signed in.

You may notice the information in a yellow banner at the top saying Developer A requested
your review. You can take a shortcut by clicking Add your review, but we will take the

longer process here, justin case you don’t:

= O ayo-creater | my-blank-repe & Q. Type [7]to search & == | O &
< Code (2 Issues [Pullrequests 1 (2 Actions [Projects (0 Security [~ Insights
ayo-creator requested your review on this pull request.
 L———
Add hello world python file hello_world.py #1 Fd <> Gogs >
ayo-croator wants to merge 1 commit into medn from asd-sinple-file '—'
& Comversation o < Commits 1 [l Checks o [Files changed 1 “1-0m
v ayo-creator commanted 32 minutes ago Reviewers e}
wyooutlock .
I have just added the Hello World file, | have tested this in the dev branch and it seems to work really well, This is
a great start! Lat's gol & Still in pragress? Learn shout draflt PR @
©
Asslgrees e}
< Add hello world python file hello_world.py 82930ce Mo one—assign yoursed!
- Lahels &
@ 5r ayo-creator requested a review from ayooutlook 32 minutes ago
None yet
i | Projects o]
& Review requested Show all raviewsrs
Mone yet
Reviaw has baan n 1. It i not raquired to menge
Learn more about 1
Miestons 8

A 1 pendina reviewsr w

Figure 6.14: Pull Request review suggested to reviewer in a yellow banner

Chapter 6 165

3. Navigate to the Pull requests tab in my-blank-repo and select the pull request that match-
es the title you created.

4. Inthe Conversation tab, examine the description and the timeline trail below it.

5. Now navigate to the Commits tab and examine the list. This will display all the commits

that were proposed to be merged in chronological order.
6. Navigate to the Files changed tab.
7. Review the code: Check the changes made in hello_world.py.

8. Leave comments: If you have suggestions or questions, use the comment feature. Every
line of code is numbered. To make a comment on a particular line of code, hover over the

line number (a plus sign (+) should appear):

Changes from all commits + File filter + Conversat

v 1lm hello_world.py ﬂ,:'

@@ -0,0 +1 @@
1“- print("Hello, World!")

Figure 6.15: Click + to leave comments

When you click on the plus sign next to a line or after selecting multiple lines, the follow-

ing popup opens:

Write Preview H B I i= & ¢& =

o= ¢ @ 2 & [

Add comments to your code. It will make it more readable for other developers)

I Markdown is supported Paste, drop, or click to add files

Za
Cancel Add single comment

Figure 6.16: Add a review comment

You can add a single comment. You can also do this for multiple lines. Adding a single
comment is for just adding comments; it may not require actions from the developer.
Starting a review, on the other hand, is a new review cycle, which may require back and

forth between the developer and reviewer.

166

Pull Requests and Code Reviews

Propose your code changes as a reviewer

Furthermore, you can propose your own actual code changes directly from the comment
dialog box that shows up. This way, you are suggesting actual code that will be merged
with the code that Developer A proposed while within the PR. To do this, click on Add a

suggestion:
Write Preview " H B I
Add a suggestion, <Ctrl+g>
Add comments to your cooeTew g 5 fadable f

Figure 6.17: You can propose a code suggestion besides just explaining your review

This will append markdown text to the comment box. Write your suggested code within
the * " " suggestion markdown block. All the code written within that will replace the line

number(s) you added the suggestion to (step 6).

Type in the actual code. In this example, you can add a Python comment, # This will

print Hello, World to the screen. Click Start a review.

v 1| hello_world.py |'_|_:I

@@ -0,8 +1 @@
1 + print{“Hello, World!™})

ayooutlook (Pending)

Add comments to your code. It will make it more readable for other developers.

Suggested change
1 - print{"Hello, World!")
1 + # This will print Hello, World to the screen.

2 + print("Hello, World!")

Commit suggestion - Add suggestion to batch

Reply...
Figure 6.18: Code suggestions by Reviewer B

Now finish your first review by clicking on Finish your review on the right.

10. Type your final comments in the box and select Request changes. This means Develop-

er A must make those changes before the code can be merged (there are other options

available too).

Chapter 6 167

11. Click Submit review.

W ayo-creator wants to merge 1 commit Into main from add-simple-file [0

&) Conversation 0 o Commits 1 [l Checks o [E) Files changed 1 +H-0m
Changes fram all commils = Flefiter = Comversations = Jumgto = 651 = O1flasviowed [aok copliat Review in codespace m
v lm hetla_world.py (& FHEH it *
B3 -0,8 <1 g8
1+ printi*Hella, Worldi"} Write Preview H B JF = O @ 12 = % & @@ «

by yooutiook { Pending)

Great job so far. | suggested a few code changes. Please have a look and let me know
s . once you have accepted them. Thanks
Add comments to your code. It will make it more readable for

Suggested change

1 - arint{"Hella, World!"} [T Markdawn is supparted [Pasta, drog, or click to add files
1+ # This will print #elle, World to the screens
2+ print("Hello, World!™) (! Comment
Submit genersd feedback without explicit spproval,

. Approve
o Submit fesdback and approve marging these changas

) Request changes

jl feedback that must be addr

befate merging.

Do rat share my persanal informatian

vy Raply.

O@zuu GitHub, Inc. Terms Privacy Socuity Status Docs Contact Manage coakies

Figure 6.19: Reviewer B submits first review

12. Switch back to Developer A and go to the Conversation tab for Developer A to examine
the review comments and code change suggestions.

Add hello world python file hello_world.py #1
ayo-creater wanls 10 merge 1 commit iMe matn from add-ssepte—fite (O

?&’ & ayooutiook reviewed 2 minutes ago ‘-—- View reviewsd changes

Miestane e
o mestone
ayooutleok laft & comment ar
Development @
Great job so far. | suggested a few code changes. Please have a look and let me know once you have
BCI:EptEd them. Thanks Successtully merging this pull request may close
these isswes.
@ Hone yet
Hatifications. Customize
hello_warld. py
Unsubscrie
weu wau ae -840 +1 2@ =
You'fe fecaiving motificath i
1+ print{®Hella, Warldin} fau'te recaiving natifications because yeud're

walching this repesitary,
4 Ayoouthook 32 minutes ago

Add comments to your code. It will make it more readable for other developers. 2 participants

B
Suggested change W ek
1 - print{UHello, Worldl™)
B Lock conversation
1+ #THIS WIlL print Hello, World to the Sereen:

2+ print{"Hello, World!™)

Commit suggestion Add suggestion to batch

@

5 Reply.

Figure 6.20: Developer A accepts and commits code suggestions

168

Pull Requests and Code Reviews

13.

14.
15.

To accept the suggestion, select Commit suggestion and type a commit message in the

ensuing boxes.
Click on Commit changes.

Next to the reviewer at the top right, click the recycle icon to re-request a review. This will

prompt Reviewer B that you're ready for a second review.

Step 7: Approve the pull request

1.

2.

Switch to Reviewer B for a final review of the work. You will notice some changes have

occurred since the last review.

ayooutlook requested changes 11 minutes ago View reviewead changes

ayooutlook left a comment Wiy

Great job so far. | suggested a few code changes, Please have a lock and let me know once you have
accepted them. Thanks

@

hello_world.py £ Show resolved
et

° New changes since you last viewed View changes
e i a— /
o -;'_,.,- Update hella_world.py add comments to the code .- Verified 7287718

Figure 6.21: Reviewer B reviews additional commits

Click view changes.

Chapter 6 169

3. Approve the pull request: If everything looks good, click on Review changes and select
Approve. Then click Submit review.

= O ayo-creator | my-blank-repe & Q. Type [7]10 search B +« O N 2

¢» Code (2) lssues [Pulirequests 1 (5) Actions [Projects (D Security | Insights

Add hello world python file hello_world.py #2 Edit | <> Cade -
ayo-creator wants 1o merge 2 commils into main from add-sinple-file (&
Q) Conwersation 3 o Commits 2 EL Checks o [® Files changed 1 +2-0mm
Changes from | commit = FileTtar = Comversatior, TMSN YOUF review Review changes =
v 1im helle warld. py (0 Write | FPreview H B I = ¢ & I E E @ @ @2 & IWewes 01 e
o -1 41,200
1
I 4+ will print Hello, W LGTM! Well done
2 print{"Hello, World!")
ayo-creator marked this conversation as resc
[Markdown is supported] Paste, drop, or elick to add fles
' Comment
Submit ganars: fasdback without explicl: spprog
0 & 2024 GitHub, Inc. e O Approve
Submit feedback and appe ng these changes.
Request changes
Submit feedback thet must be addressed betors merging. \
Sishmit roview 8

Figure 6.22: Reviewer B approved the pull request

Step 8: Merge the pull request

1. Switch back to your original Developer A account. At the bottom of the Conversation tab,
you will notice Reviewer B has approved your PR.

2. Click on Merge pull request and confirm the merge.
3. Click Delete the Branch to optionally remove the add-simple-file branch after merging.

4. Scroll through the conversation timeline and examine the trail. Everything is captured.

Certification tip

N, ! / . . .
—@— You may be given multiple-answer questions to choose two or three answers — for
4 N

example, which three steps do you need to carry out if you need to make code changes?

Clone a repo, make code changes, raise a PR, merge a PR

170 Pull Requests and Code Reviews

Congratulations! £ You’ve successfully created a pull request, conducted a code review, and

merged changes into the main branch. Phew! That took a while. Thanks for being patient.

Let us take a deep dive into the code review that you have just practiced and explore how to

conduct effective code reviews, a critical component of this lifecycle.

Conducting effective code reviews

Conducting effective code reviews is crucial for maintaining high software development standards.
This process ensures code quality and promotes collaboration among team members. Here’s a

brief overview of how to conduct meaningful code reviews.

Code reviews generally serve two main goals:

e Ensuring code quality: The main goal is to verify that the code meets quality standards,

checking for correctness and adherence to conventions to catch bugs early

e Enhancing collaboration: Code reviews allow team members to learn from each other,

sharing insights and best practices

Review techniques
When reading code changes, reviewers should:
e Understand context: Familiarize yourself with the purpose of the changes by
reading the pull request description
e Focus on key areas: Pay attention to critical sections such as algorithms and se-
curity

When identifying issues, reviewers should look for:

e Bugs: Look for logical errors and unexpected behavior
e Performance: Assess code efficiency regarding time complexity and resource usage

e Security: Identify vulnerabilities, such as improper input validation

Providing constructive feedback

When delivering feedback, reviewers should:

e Bespecific: Offer clear, actionable suggestions instead of vague comments

e Usearespectful tone: Encourage discussion with phrases such as “Have you con-

sidered...?”

Chapter 6 171

When balancing praise and critique, reviewers should:

e Highlight strengths: Acknowledge what the author did well to boost morale

e Constructive criticism: Focus critiques on the code, not the individual

Using GitHub tools for reviews
GitHub provides several built-in features and Al-powered options that streamline the review
process and make collaboration more effective:

e Comments: Use inline comments for specific lines to clarify feedback

e Suggestions: Propose changes directly in the code to demonstrate feedback

e Approvals: Use the approval feature to indicate when the code is ready to merge

e GitHub Copilot: Use the Al-powered feature to reduce the review cycle in many ways:

e Use GitHub Copilot to draft the description of the pull request and an outline of
the changes in the commits

e Invite GitHub Copilot as a reviewer, in addition to humans, to provide suggestions
and improvements to code

e With GitHub Advanced Security, you can use Copilot’s Al capabilities to detect

vulnerabilities in your code and use Autofix to suggest actual code to fix them

Effective code reviews are vital for developers. By understanding review goals, employing sys-
tematic techniques, providing constructive feedback, and utilizing GitHub tools, you can foster

a culture of quality and collaboration within your team.

In the next section, we will summarize how you can integrate your code with confidence.

Integrating changes with confidence

Integrating changes into the main codebase is a critical step in the development process. It requires
careful consideration to ensure that the integration is smooth and does not introduce issues. We
already discussed at length, in previous chapters, some of the topics we will mention, but this

section will summarize and guide you through the essential steps for merging changes confidently.

Final checks before merging:
Before merging a pull request, it’s vital to perform thorough checks to ensure everything is in order:
e Tests: Run all relevant tests to verify that the new code does not break existing function-

ality. This includes unit tests, integration tests, and any automated tests set up in your
CI/CD pipeline.

172 Pull Requests and Code Reviews

e Approvals: Ensure that the pull request has received the necessary approvals from team
members. This not only confirms that the code has been reviewed but also that it meets

the project’s quality standards.

Understanding merge conflicts and resolutions

When conflicts arise, GitHub provides tools to help you resolve them. You’ll need to manually
edit the conflicting files, choose which changes to keep, and then commit the resolved files. It’s

essential to communicate with your team during this process to ensure that everyone is aligned.

Merging strategies

In the previous chapter, Chapter 5, Branching and Merging Strategies, we discussed merging strat-
egies such as Merge, Squash, and Rebase. Choosing the right merging strategy is crucial for main-

taining a clean and understandable project history.

Consider your team’s workflow and preferences. Some teams prefer a clean, linear history (fa-
voring Rebase or Squash), while others value the detailed history provided by traditional merges.

Establishing a consistent strategy helps maintain clarity in the project’s commit history.

Post-merge best practices

After merging changes, there are a couple of best practices to follow to ensure ongoing project
health.

e Communicating changes to the team: Notify your team about the merged changes, es-
pecially if they impact ongoing work. This can be done through team meetings, project
management tools, or direct communication channels. Clear communication helps ev-

eryone stay informed and aligned.

¢ Monitoring the impact of merged changes: After merging, keep an eye on the appli-
cation’s performance and functionality. Monitor for any issues that may arise from the
new changes, and be prepared to address them quickly. This may involve reviewing logs,

running additional tests, or gathering feedback from users.

Integrating changes with confidence is essential for maintaining the integrity of your codebase.
By preparing thoroughly, choosing the right merging strategy, and following post-merge best

practices, you can ensure that your project remains robust and reliable.

Chapter 6 173

Some food for thought

We are now at the end of the chapter. Congratulations!

Looking at what you have learned thus far in the chapter, this might be a time to pause and think

about the following questions:

e Howis code reviewed in your current workflow?
e What would you do if your PR receives vague feedback?

e Do you have areview/merge strategy process documented and do you regularly commu-

nicate this to the team?

Let us summarize what we learned.

Summary

We focused on pull requests as a cornerstone for maintaining code quality and fostering team-
work. We delved into the intricacies of pull requests and code reviews on GitHub, providing the

necessary tools and knowledge to navigate this essential workflow effectively.

We explained the concept of a pull request, which was popularized by GitHub in 2008. A pull
request facilitates the process of merging code changes, allowing developers to notify team mem-
bers that their work is ready for review and can be merged after a successful review. It represents
a dialogue between developers, where ideas are exchanged, improvements are suggested, and

code is refined.

We highlighted the importance of pull requests in collaborative development, promoting trans-
parency and collaboration. Before pull requests existed, code management relied on different
practices and tools, such as version control systems, manual code reviews, branching and merging,

and documentation and change logs.

We then went through the lifecycle of a pull request, from creating a pull request to conducting
a code review, and finally merging the pull request. We provided a step-by-step guide on initiat-
ing a pull request, including best practices for writing clear descriptions and the review process

overview.

In the lab exercise, we made code changes, submitted them for review by creating a pull request,
and went through the review process to have it approved before merging it into the main branch.
We also discussed the concept of a diff, which showed the changes between two versions of a

file or codebase.

174 Pull Requests and Code Reviews

By understanding the pull request lifecycle, we contributed to a culture of quality and teamwork,
ensuring that every change enhanced the project. In the next chapter, we will explore advanced

topics in GitHub workflows, further enhancing your skills in collaborative development.

Let’s test how much you remember.

Test your knowledge

1. Whatis the primary purpose of a pull request in collaborative software development?

a. To create anew branch in the repository
b. Tomerge code changes from one branch into another
c. To delete a branch from the repository

d. To clone arepository
2. Which of the following is NOT a role typically involved in the code review process?

a. Author
b. Reviewer
c. Maintainer

d. Tester
3. Whatis a “diff” in the context of version control systems such as Git?

a. Atool used to create new branches
b. Aformatused to show changes between two versions of a file or codebase
c. A method to delete files from the repository

d. A command to push changes to the remote repository

Useful links

e GitHublaunched the pull request: https://github.blog/news-insights/the-1library/
oh-yeah-there-s-pull-requests-now/

e About pull requests: https://docs.github.com/articles/using-pull-requests

e Comparing commits: https://docs.github.com/en/pull-requests/committing-
changes-to-your-project/viewing-and-comparing-commits/comparing-commits

e Linking a pull request to an issue: https://docs.github.com/en/issues/tracking-

your-work-with-issues/linking-a-pull-request-to-an-issue

https://github.blog/news-insights/the-library/oh-yeah-there-s-pull-requests-now/
https://github.blog/news-insights/the-library/oh-yeah-there-s-pull-requests-now/
https://docs.github.com/articles/using-pull-requests
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue
https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue

Chapter 6 175

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://packtpub.com/unlock

Issues, Projects, Labels, and
Milestones

Welcome to yet another interesting chapter, learning more about GitHub. This chapter delves
into GitHub’s project management tools, focusing on issues, labels, and milestones. It aims to
teach you how to use these features to track progress and organize work within a team or larger

projects in a team of teams. Let’s go!
We will cover the following main topics:

e Introduction to issues

e Lab 7.1: Creating and managing issues
e Lab 7.2: Creating an issue template

e Labels

e Milestones

e Projects

178 Issues, Projects, Labels, and Milestones

Technical requirements

To complete the lab in this chapter, you will need the following:

e A working computer
e Two GitHub individual accounts to switch between two personas

e A GitHub repository (you can use the same one we already used in previous chapters)

Introduction to issues

First, let’s talk aboutissues. Issues are a fundamental part of GitHub’s project management tools.
They serve as a way to track tasks, enhancements, bugs, and other project-related activities. Each
issue can be assigned to team members, labeled for categorization, and linked to pull requests to

streamline the development workflow.

What are issues? Issues are used to track work within a repository. They can represent tasks, fea-
ture requests, bug reports, or any other type of work item and provide a structured way to manage
work and facilitate collaboration among team members. Each issue has a unique identifier and
can include a title, description, labels, assignees, and comments. GitHub issues are particularly
feature-rich. I particularly love the timeline trail below the issue body, which tracks (in chrono-
logical order) all interactions with the issue, including comments, modifications, linked actions,

status changes, and so on helping you move the conversation forward.

You can also break down an issue into sub-issues and track progress across child items from the
parentin a hierarchical format. This is particularly useful when you break down a large body of

work into several smaller tasks or items in a project, program, or portfolio.

Let’s go into more detail about some of the features of an issue.

Chapter 7 179

Title and description

Each issue starts with a title and a description. The title provides a summary of the issue, while
the description offers more detailed information. This can include the context, steps to reproduce
a bug, or specific requirements for a task. The description supports Markdown, allowing you to
format text and add links, images, and even code snippets to make the information clear and

comprehensive. It also supports emojis.

[Request] Add Dark Mode Support to Application ## #3
ayo-creator opened this issue now « 0 comments

L}
H- ayo-creator commented now

Problem Statement

Users have requested the addition of a dark mode to improve the user experience, especially in low-light environments.

Steps to Reproduce

1. Open the application.
2. Navigate to the settings menu.
3. Search for a dark mode option.

Expected Behavior

An option to enable dark mode should be available in the settings menu.

Actual Behavior

Mo option for dark mode is currently available.

Figure 7.1: An issue of a feature request displaying its title and description

180 Issues, Projects, Labels, and Milestones

Labels

Labels are used to categorize and prioritize issues. They help in quickly identifying the type of
issue (e.g., bug or enhancement), its priority (e.g., high or low), or its status (e.g., in progress or
completed). You can create custom labels and apply multiple labels to a single issue, making it

easier to filter and search for specific types of work.

Labels 3

enhancement must-have

Figure 7.2: A label helps to categorize an issue

Types

Just like labels, issue types are classifications used to categorize and manage different kinds of
issues within a repository or organization. The defaultissue typesinclude bug, feature, and task,
but organizations can create custom types to better suit their workflows. Each issue type can have
a specific name and description, helping team members understand its purpose at a glance. This
system enhances organization and prioritization, allowing users to filter and search for issues

effectively, making project management more streamlined and efficient.

Issue types
Customize the issue types for this organization. Issue types can be used to classify and Create new type
manage issues in repositories across the organization.

3 types (max 10)

Task A specific piece of work
Bug An unexpected problem or behavior
Feature A request, idea, or new functionality

Figure 7.3: List of default issue types in an organization

Chapter 7 181

Assignees

Issues can be assigned to one or more team members. This helps in distributing the workload
and ensuring that each task has a clear owner. Assignees can be added or changed at any time,

providing flexibility in managing responsibilities.

Assignees 3
" ayo-creator

4, ayooutlook

Figure 7.4: Issue assignees

Milestones

Milestones are used to group issues that share a common goal or deadline. They help in planning
and tracking the progress of larger projects. Each milestone can have a due date and a description,

and you can view the percentage of completed issues to gauge progress.

Comments

The comments section allows team members to discuss the issue, ask questions, and provide up-
dates. Comments support Markdown, enabling rich text formatting, and can include mentions to
notify specific users. This feature fosters collaboration and ensures that all relevant information
is captured in one place. You can also use emojis in comments, similar to the issue description,
or write a Markdown file in a repo. Most emojis that come built-in with macOS or Windows are
supported. For a list of the supported emojis, visit the emoji cheat sheet (https://github.com/
ikatyang/emoji-cheat-sheet/blob/master/README.md).

Reactions

Reactions allow users to express their feedback on an issue or comment using emojis. This can be
useful for quickly gauging the sentiment of the team or community without adding additional

comments. Common reactions include thumbs up, thumbs down, and smiley faces.

Linking issues and pull requests

Issues can be linked to pull requests, which helps in tracking the progress of work and ensuring
thatissues are automatically closed when the associated pull requestis merged. This integration

streamlines the workflow and keeps everything connected.

https://github.com/ikatyang/emoji-cheat-sheet/blob/master/README.md
https://github.com/ikatyang/emoji-cheat-sheet/blob/master/README.md

182 Issues, Projects, Labels, and Milestones

Templates

Issue templates help standardize the information collected for different types of issues. They en-
sure consistency and make it easier for contributors to provide the necessary details. Templates can

be created by adding Markdown files to the . github/ISSUE_TEMPLATE directory in your repository.

Certification tip

]
N /
-@— You may be given a question aboutissue templates to choose which location to store
4 N\
g them. The answer list may contain one correct answer; other answers may be incor-

rectly spelled. Be sure to study the exact spelling of the location of the issue template.

Notifications

Users can subscribe to issues to receive notifications about updates. This ensures that everyone
stays informed about the progress and any changes related to the issue. Notifications can be

customized to suit individual preferences.

Search and filtering

GitHub provides robust search and filtering capabilities for issues. You can filter issues by labels,
assignees, milestones, and other criteria. This makes it easy to find specific issues and manage

large repositories with many open tasks.

Cross-repository issues

For organizations with multiple repositories, GitHub allows you to link issues across repositories.
This is useful for tracking dependencies and ensuring that related work in different repositories

is coordinated.

By leveraging these features, GitHub issues provide a comprehensive and flexible way to man-
age work, facilitate collaboration, and keep projects on track. They are an essential tool for any

development team using GitHub. Now, let’s create an issue to see what this is like.

Chapter 7 183

Lab 7.1: Creating and managing issues

In this lab, we will create an issue and add a few properties to it.
To create an issue, we’ll use the following steps:

1. Navigate to the Issues tab in your repository:

= O ayo-creator [my-blank-repo &

<> Code(() Issues 1 .3'1 Pullrequests (*) Actions [Projects (U Security |~ Insigh

Figure 7.5: The Issues tab in the GitHub repository

2. Click on New issue.

3. IntheAddatitlefield, enter a brief summary of the issue —for example, Bug: Application
crashes on login.
4. In the Add a description field, provide a detailed description of the issue. Include any

relevant information such as steps to reproduce the bug, expected behavior, and actual

behavior, as in this example:

Description:

The application crashes when a user tries to log in with valid
credentials.

Steps to reproduce:

1. Open the application.

2. Enter a valid username and password.
3. Click on the "Login" button.

Expected behavior:

The user should be logged in successfully.

Actual behavior:

The application crashes and displays an error message.

5. On the right side of the page, under the Labels section, click on the Labels title or gear

icon (183).

184 Issues, Projects, Labels, and Milestones

6. Select the default labels that come out of the box, such as bug, enhancement, and help

wanted. This will apply these labels to the issue. For the purpose of this lab, let’s select bug.

7. Under the Assignees section on the right side of the page, click on the Assignees title or
gear icon ({33).

8. Selectyour GitHub username to assign the issue to yourself (there’s also an Assign yourself
option that skips adding your own username manually).

9. Let’s assign it to one more person. Select a second GitHub account username that you
have access to sign in as. We’ll call this Developer 2.

10. Once you have filled in all the necessary information, click on the green Create button at

the bottom of the page.

And that’s it! You've successfully created a GitHub issue with a title, description, and labels, and
assigned it to yourself. Examine the page and the properties you have set. Now, let us sign in as

Developer 2 and add some comments to the same issue.

1. Switch to Developer 2’s profile using the account switcher (log in to GitHub using Devel-

oper 2’s credentials if not logged in already).

e L]
/| to search 'H' ayo-creator

N

Switch account

ayooutlook
v % Fork 0
A" Add account
[+ Sign out...
About

[Your projects

This was left blan X Vo S6aie

Figure 7.6: GitHub account switcher

2. Navigate to the repository where the issue is located.
3. Click on the Issues tab to view all issues in the repository.

4. Locatetheissue thathasbeen assigned to Developer 2. You can use the search bar or filter

by assignee to find it quickly.

5. Click on the issue to open it.

Chapter 7 185

6. Scroll down to the Add a comment section.

7. In the comment box, write your comment using Markdown for formatting and include
an emoji, as in this example:
**Update: **

- The issue has been reviewed and the initial analysis is complete.

- Next steps include debugging the login function and testing the
fix.

:smiley: Looking forward to resolving this soon!

8. Once you have written your comment, click on the green Comment button to submit it:

[Request] Add Dark Mode Support to Application @ £3
P aye-creator cpened this issue 2 hours ago + 0 comments

Ul Design Specifications

@

> 4r ayo-creator added enhancement must-have (Wifix) labels 2 hours ago
A 4 ayo-creator assigned ayo-creator and ayooutlook 1 hour ago

o 4 ayo-creator added this to the Operation Accessibility 101 milestone 1 hour age

- Add a comment
Write Preview H B I E & & = = o8z & @ 2 «

Update:
- The issue has been reviewed and the initial analysis is complete,
- Mext steps include debugging the login function and testing the fix.

:smiley: Locking forward to resolving this soon!

LI Markdown is supperted [z+] Paste, drop, or click to add files

& Close with comment - m

Figure 7.7: Adding comments to issues with timeline trail visible

Well done! You’ve successfully switched to Developer 2’s profile and added a comment with

Markdown styles and an emoji to the issue. This helps in keeping the team updated and ensures
that all relevant information is documented.

186 Issues, Projects, Labels, and Milestones

Issues can be managed by updating their status, adding comments, and closing them when the
work is completed. This helps in keeping track of the progress and ensuring that all tasks are
addressed.

Using issue templates

Issue templates help standardize the information collected for different types of issues. Just like
Google Forms or Microsoft Forms, issue templates let you create a form-like view for collecting
information for an issue in a more structured manner. They ensure consistency and make it easier
for contributors to provide the necessary details. Instead of having just the title and description
fields, with issue templates, you can have data-specific fields, such as a drop-down list of cate-

gories, a single-line text field for the address, a checkbox for the environment, and so on.
Here are a few real-life use cases where they can be particularly beneficial:

e Bugreporting: For software projects, having a bug report template ensures that all neces-
sary information is provided when a bug is reported. This can include steps to reproduce
the bug, expected behavior, actual behavior, and any relevant screenshots or logs. This

helps developers quickly understand and address the issue.

e Feature requests: When users or team members want to suggest new features, a feature
request template can guide them to provide detailed information about the feature, its
benefits, and any potential impact on existing functionality. This helps in evaluating and

prioritizing feature requests effectively.

¢ Documentation improvements: For projects with extensive documentation, a template
for documentation improvement requests can help standardize the information needed
to update or enhance the documentation. This can include the specific section of the

documentation, the proposed changes, and any supporting information.

e Supportrequests: For open source projects or products with a large user base, a support
request template can help users provide all necessary details when seeking help. This can
include the version of the software, the environment in which itis running, and a detailed

description of the issue they are facing.

e Security vulnerabilities: For projects that need to handle security vulnerabilities, a se-
curity issue template can ensure that sensitive information is reported in a structured
and secure manner. This can include details about the vulnerability, steps to reproduce
it, and any potential impact.

e Task management: For teams using GitHub to manage their projects, task templates
can help standardize the way tasks are created and tracked. This can include the task

description, assignees, labels, and any relevant deadlines or milestones.

Chapter 7

Templates can be created by adding Markdown files to the .github/ISSUE_TEMPLATE directory
in your repository. This is particularly useful for large projects with multiple contributors, as it

helps maintain a uniform format for all issues. Issue templates also support the YAML format if

you're looking to build a more robust or complex form.

It will be great to see this in action. Let’s do another lab exercise on issue templates.

Lab 7.2: Creating an issue template

Let’s create step-by-step instructions on how to create a bug report issue template (remember to

switch back to the Developer A account). This will help standardize the way bugs are reported

in your repository.

Here is a step-by-step guide to creating a bug report issue template:

1.
2. Access the settings: Click on the Settings tab located at the top of the repository page.
3.

Navigate to your repository: Go to your repository on GitHub.

Go to issue templates:

a. Intheleftsidebar, click on the General section.

b. Scroll down to the Features section and click on the Set up templates button

under Issues in the Features section.

) Code security ain e
&2 Deploy keys
Secrets and varigbles ~
= Features
Integrations :
Wikis

28 GitHub Apps Wikis host docurentation for your repasitory.
=5 Email netifications P Upgrade or make this repository public to enable Wikis

= GitHub Wikis 15 a simple way to et others contribute content, Any GitHub user can create and edit

peges to use for documentation, examples, support, o anything you wish.,

acking inta your reposiory, Keep prajects on irackgh issue lsbels and milestones, and

Gat organized with issue templates

Give contributors issue templates that belp you cut through the noise and Set up templates

heto thern push your project fanward,

| Sponsorships

Spansceships belp your community know haw to financialy supsart this repasitory.

Figure 7.8: Setting up issue templates from repository settings

188 Issues, Projects, Labels, and Milestones

4. Select a starting template:

a. Inthe Add template: select dropdown, select Bug report. This will select the Bug

report template:

Add template: select ~

Bug report
Standard bug report template

Feature request
Standard feature request template

Custom template
Blank template for other issue types

Figure 7.9: List of available starter issue templates

b. Click on Preview and edit. This will display a preview of the template and give

you the chance to customize the starter template.
5. Customize your template:

a. Nextto the Issue: Bug report title, click on the pencil icon (£) to edit.
b. Inthe Template content field, replace the content for your bug report template

with the following Markdown example:

Description

A clear and concise description of what the bug is.

Steps to reproduce

Steps to reproduce the behavior:

1. Go to '...'

2. Click on '

3. Scroll down to '...'
4. See error

Expected behavior

A clear and concise description of what you expected to happen.

Chapter 7 189

Screenshots

If applicable, add screenshots to help explain your problem.

Additional context

Add any other context about the problem here.

c. In the Optional additional items section, click the Labels field or the gear icon
next to it and select bug. This will ensure that a bug label is automatically applied

when anyone submits a bug form (issue).

Optional additional items
Issue default title
This will be suggested as the issue title

Add a placeholder for issue title, ex. [BUG]

Assignees]

No one—assign yourself

Labels ©

None yet
Apply labels to this issue

[Filter labels]

@ bug

Something isn't working

@ documentation
Improvements or additions to documentation

duplicate
This issue or pull request already exists

D ® 2024 GitHub, Inc. Terms anage cookies Do

enhancement
Mew feature or request

Figure 7.10: You can preselect the labels that issues created through the template
will have

6. Save the template:

a. Once you have added the content, click on Propose changes at the top right of
the page.
b. Reviewyour changes, leave the main branch selected, and click on Commit chang-

es to submit the new template.

190 Issues, Projects, Labels, and Milestones

And that’s it! You’ve successfully created a bug report issue template. This template will now be
available for users to fill out when they create a new issue, ensuring that all necessary informa-
tionis provided and standardized. You have committed this template file into the repo alongside
your code, ensuring that it is managed by the same version control principles guiding your main

application/software code.
Let’s examine this file and see!

1. Visit the Code tab and navigate to the .github/ISSUE_TEMPLATE directory in your re-
pository.

2. Clickon bug_report.md file and examine the contents.

Test the behavior by creating a new issue by visiting the Issues tab of the repo. Click New issue.

You will see the issue template available to use.

Create new issue @ x
Bug report 54
Create a report to help us improve

Blank issue 2>

Create a new issue from scratch

Figure 7.11: Issue templates are consumable when you try to create a new issue

Linking issues to pull requests

Linking issues to pull requests helps track the progress of work and ensures that issues are au-
tomatically closed when the associated pull request is merged. This can be done by including a
prefix such as closes followed by #issue_number in the pull request description. This integration

streamlines the workflow and ensures that all related tasks are linked and tracked together.

Here is a list of possible prefixes you can use. The pull request must be on the default branch:

e close
. closes
. closed
° fix

e fixes

e fixed

Chapter 7 191

. resolve
. resolves

. resolved

Throughout GitHub, particularly in places where Markdown is supported, typing the single #
sign is a precursor for selecting an issue. Typically, a small box will pop up and you can search
for and select the issue. You can also directly type the issue number and GitHub will understand

this as a shorthand to link the issue. It behaves just like a hyperlink.

What is a GitHub issue number?

Anissue number on GitHub is a unique identifier assigned to each issue created in a repository. It

helps in tracking and referencing specific issues. You can find the issue number in several ways:
e Ontheissue page: When you open an issue in a GitHub repository, the issue number is

displayed at the top of the page, usually next to the issue title. It looks something like #123.

e Inthe URL: The issue number is also part of the URL when you view an issue. For exam-
ple, if the URL is https://github.com/username/repository/issues/123, the issue

number is 123.

e In the list of issues: When you browse the list of issues in a repository, each issue will

have its number displayed next to the title.

Let’s dive deeper into the specifics of labels and milestones in GitHub.

Managing and creating labels

Now thatyou’re familiar with whatlabels are and how they help categorize and prioritize issues,
let’s take a closer look at how to create and manage them effectively within a repository. This
section will guide you through customizing labels to suit your project’s workflow and improving

team collaboration through consistent labeling practices:

e Creating and managing labels: To create a label, navigate to the Issues tab of your repos-

itory. Then, click on Labels on the right-hand side, next to the filter search box:

O Labels 11 o Milestones 1 m
e ———

Projects « Milestones = Assignee « Sort

Figure 7.12: Navigation link for labels

https://github.com/username/repository/issues/123

192

Issues, Projects, Labels, and Milestones

Here, you can create new labels by specifying a name, description, and color. This helps
in visually distinguishing between different types of labels:

<» Code {} Issues 1 Il Pullrequests (=) Actions [I7] Projects W) Security [~ Insights 53 Settings

T Labels T Milestones O Search all labels New label

1labels Sort »
m something isn't working Edit | Delete
Improvements or additions to documentation Edit | Delete
duplicate This issue or pull request already exists Edit Delate
enhancement New feature of request O 1 Edit | Delete
Good for newcomers Edit | Delete

Figure 7.13: List of some of the labels available in a repository

Managing labels involves editing existing labels to update their names, descriptions, or
colors, and deleting labels that are no longer needed. This ensures that your labeling

system remains relevant and useful.

Using labels effectively: Apply labels to issues and pull requests to provide context and
help team members quickly understand their purpose and priority. For example, you
might use labels such as bug, enhancement, urgent, or help wanted. Use labels to filter
and search for issues. This makes it easier to manage and track work, especially in large
projects with many issues and pull requests. For instance, you can filter issues by label to

see all bugs that need fixing or all enhancements that are in progress.

Setting and tracking milestones

Milestones are used to group issues and pull requests that share a common goal or deadline. They

help you plan and track the progress of your project. Here are some detailed aspects to consider:

Setting and tracking milestones: To create a label, navigate to the Issues tab of your
repository. Then, click on Milestones on the right-hand side, next to the filter search box
(next to Labels). Here, you can set a title, description, and due date, and associate issues
and pull requests with the milestone. This helps in organizing work around specific goals

or deadlines.

Chapter 7 193

Track the progress of a milestone by viewing the percentage of completed issues and pull
requests. This gives you a clear picture of how close you are to achieving your goal and

helps in identifying any bottlenecks or delays:

& 10pen -~ 0 Closed Sort ~

Operation Accessibility 101
0% complete | 1open Oclosed

E Due by December 31, 2024 (T) Last updated 3 days ago
Edit Close Delete

We want to make the Semtire web app to be accessible to users that are
visually impaired by the end of the calendar year.

Figure 7.14: You can track the progress of a milestone

e Best practices for milestones: Break down large projects into smaller, manageable mile-
stones. This makes it easier to track progress and stay on schedule. For example, you might

create milestones for each major feature or release.

Regularly review and update milestones to reflect changes in project scope or priorities.

This ensures that your milestones remain relevant and aligned with your project goals.

By effectively using labels and milestones, you can organize your work, prioritize tasks, and track
progress toward your project goals. This not only improves team collaboration but also ensures

that everyone is aligned and working toward the same objectives.

Certification tip

|
-\@/— Learn a bit more about searching and filtering issues at the end of this lab. Go to the

E Issues tab in your repo and attempt different filtering combinations in the search

box to see the result. Questions may come up on searching or filtering issues.

Up next, projects! Before we go into GitHub Projects, bear in mind that Projects is a new powerful
tool, built to complement GitHub issues. While it stands on its own, it cannot exist on its own
without GitHub issues. We will still talk about GitHub Projects in its own dedicated chapter later
on in the book, but let’s touch on this entirely related topic briefly.

194 Issues, Projects, Labels, and Milestones

Projects

We will explore GitHub Projects more deeply in Chapter 13, Project Management with GitHub Projects,
but let’s take a quick look here first as Projects relies deeply on issues and their complementary

features.

GitHub Projects is another fantastic feature that aids team collaboration and improves produc-
tivity. Itis integrated within GitHub, designed to help teams plan, track, and manage their work.
It provides a flexible and visual way to organize tasks, issues, and pull requests, making it easier

to collaborate and stay on top of project progress.

There are two versions of GitHub Projects: Projects Classic and Projects 2.0. Ultimately, Projects

Classic is being deprecated, but it is still in use as at the time of writing this book.

GitHub Projects Classic

GitHub Projects Classic is the original version of GitHub’s project management tool. It offers a
Kanban-style board where you can create and manage tasks using cards. Each card represents
an issue or pull request, and you can move cards between columns to reflect their status. Key

features of GitHub Projects Classic include the following:

¢ Kanban boards: Visualize your workflow with customizable columns, such as To do, In
progress, and Done

e Issueand pull requestintegration: Link issues and pull requests to project cards, allowing
you to track progress and manage work in one place

e Milestones: Group related issues and pull requests into milestones to track progress to-
ward specific goals or deadlines

e Labels: Categorize and prioritize tasks using labels, making it easier to filter and search

for specific work items

Chapter 7 195

e Assignees: Assign tasks to team members to distribute workload and ensure accountability

& octo-org [projec

Code lssues 3 Pult raguests Actions A projects 1 Wiki Securlty Insights Settings

4 Project Octocat Baard

1 Todo l 7 In progress ' 1 Dane

Figure 7.15: Board view of Projects Classic

Y, GitHub Projects Classic is still prevalent in some self-hosted versions of the GitHub
\/;ﬂ> Enterprise Server today, though not so common in the GitHub Enterprise Cloud

anymore. Projects Classic was removed in version 3.17 on June 3, 2025.

Now, let’s discuss Projects 2.0.

GitHub Projects 2.0

GitHub Projects 2.0 is the next generation of GitHub’s project management tool, offering en-
hanced features and improved flexibility. It builds on the foundation of GitHub Projects Classic
while introducing new capabilities to better support modern workflows. Key features of GitHub

Projects 2.0 include the following:

e Customizable views: Create multiple views of your project, such as boards, tables, and
timelines, to suit different needs and preferences

e Advanced filtering and sorting: Use advanced filters and sorting options to quickly find
and organize tasks based on various criteria, such as labels, assignees, and due dates

e Automations: Automate repetitive tasks and workflows using built-in automation rules,
such as moving cards between columns based on specific triggers

e Custom fields: Add custom fields to project cards to capture additional information, such

as priority, estimated time, or dependencies

196

Issues, Projects, Labels, and Milestones

e Improved collaboration: Collaborate more effectively with real-time updates, comments,

and mentions directly on project cards

& 4% OctoArcade Invaders e [e
[Plansing ~ [F Sprint Board. = [Azsha [E roadmap B My work B Feswires [riarity [By person [Status Board Pl By sisus [&y Spring [Done
= Filter by keyword cr by field
Not Started ; 19 Estimate; 37 Building _ B Estimate: 40 Roviow p= 6 Estimate- 17

(=) nlapring-tracking - demo #810 ® a [} plaoming-racking-dems 1160 (%) planning-tracking-dema #822 (»]
Batn go-no-go meating Updates and bug fixes 1o engine from Beta Update documentation Hero site - Development

© @ bo e QEIED QD

. () planeng-iracking-dame [~] D
@ 1 Updates ta collisian lagic
Beta signup page enhancement (5 planning-racking-dema #508
8 Genaral bug foes from Alpha faedback
-

Interviews with media autiets (D) pieneing-tracking-gemo WA1E a2 e
[onic () plaring-trasking-damo 7506 ¥ Free and pald levels

[Tracking] Upsell | Grawth srperiance (E) planning-tracking-deme #1187 -
E— [backion Ltnnture] Design new launch screen

() plaring-tracking-ceme 4518 ("] Dotumentation and Support

Account subscription design (D) plsnting- .
o ® i @z Ot
Z Polished aller, boam, and canncn sprite files
tweak difficulty

(5) planning-tracking-cento #828 6 () plswing-tracking-dema #4821 &
s Acouire domain for launch Updates to alien, beam, bomt and cannan () planniieg-tracking-deme #1101 &
() tianning- e spriles

Update README.md

7 bt

Prevent the Kenami coda from bringing
down all of GitHub

++ Add om

(Z) plarning-racking-demo #3532

Final creative shots from game

b #3m0

(D) platwing-iracking-denss KBG2 9
Updates to velozity of the ship and alien
mavements

+ Add itam

Figure 7.16: Board layout of Projects 2.0

[Tracking] Integrate payments system

+ A itarm

Differences between GitHub Projects Classic and GitHub

Projects 2.0

While both versions of GitHub Projects offer powerful project management capabilities, there

are several key differences between them:

e Flexibility: GitHub Projects 2.0 provides more flexibility with customizable views, ad-

vanced filtering, and custom fields, allowing teams to tailor their project management

experience to their specific needs

e Automation: GitHub Projects 2.0 introduces automation rules, enabling teams to stream-

line workflows and reduce manual effort

e Collaboration: GitHub Projects 2.0 enhances collaboration with real-time updates and

improved commenting features, making it easier for teams to stay aligned and commu-

nicate effectively

e User experience: GitHub Projects 2.0 offers a more modern and intuitive user interface,

making it easier to navigate and use the tool

Chapter 7 197

In summary, GitHub Projects Classic provides a solid foundation for project management with
its Kanban-style boards and integration with issues and pull requests. GitHub Projects 2.0 builds
on this foundation with enhanced flexibility, automation, and collaboration features, making it

a more powerful and versatile tool for modern project management.

Congratulations! We have dealt a fair bit with issues and Projects. Let’s summarize what we’ve

learned.

Summary

In this chapter, we delved into GitHub’s project management tools, focusing on issues, labels,
and milestones. We started by discussing the importance of issues, which are fundamental for
tracking tasks, enhancements, bugs, and other project-related activities. Each issue can be as-
signed to team members, labeled for categorization, and linked to pull requests to streamline

our development workflow.

We then provided a detailed introduction to issues, explaining their role in tracking work within

arepository and facilitating collaboration among team members.

Next, we broke down the features of an issue, such as the title and description, labels, types,
assignees, milestones, comments, reactions, linking issues and pull requests, templates, noti-
fications, search and filtering, and cross-repository issues. Each feature was explained in detail,

highlighting its importance and how it contributes to effective project management.

We also included practical lab exercises, such as creating and managing issues, adding comments,
and creating issue templates. These exercises helped us understand how to apply the concepts

discussed and improve our issue management skills on GitHub.

By leveraging these features, we can manage work more comprehensively, facilitate collaboration,
and keep our projects on track. GitHub issues are an essential tool for any development team

using GitHub, and this chapter provided us with the knowledge and skills to use them effectively.

I recommend you read more about issues and Projects. You will find useful links to resources at

the end of this chapter.

198 Issues, Projects, Labels, and Milestones

Test your knowledge

1. Whatis the primary purpose of using labels in GitHub issues?

a. To assign tasks to team members
b. To categorize and prioritize issues
c. To provide a summary of the issue

d. To track the chronological order of interactions
2. Which of the following is NOT a default issue type in GitHub?

a. Bug
b. Feature
c. Task

d. Enhancement

3. How can issues be linked to pull requests in GitHub to ensure they are automatically

closed when the associated pull request is merged?
a. Byincluding the issue number in the pull request title
b. By adding the issue number in the pull request description with a specific prefix

c. By assigning the same label to both the issue and the pull request

d. By mentioning the issue number in the comments section of the pull request

Useful links

e Emoji-cheat-sheet: https://github.com/ikatyang/emoji-cheat-sheet/blob/master/
README .md

e Linking a pull request to an issue: https://docs.github.com/en/issues/tracking-your-
work-with-issues/using-issues/linking-a-pull-request-to-an-issue

e Managing issue types in an organization: https://docs.github.com/en/issues/tracking-
your-work-with-issues/configuring-issues/managing-issue-types-in-an-
organization

o Automatingyour project: https://docs.github.com/en/issues/planning-and-tracking-

with-projects/automating-your-project

https://github.com/ikatyang/emoji-cheat-sheet/blob/master/README.md
https://github.com/ikatyang/emoji-cheat-sheet/blob/master/README.md
https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue
https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/linking-a-pull-request-to-an-issue
https://docs.github.com/en/issues/tracking-your-work-with-issues/configuring-issues/managing-issue-types-in-an-organization
https://docs.github.com/en/issues/tracking-your-work-with-issues/configuring-issues/managing-issue-types-in-an-organization
https://docs.github.com/en/issues/tracking-your-work-with-issues/configuring-issues/managing-issue-types-in-an-organization
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project

Chapter 7 199

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://packtpub.com/unlock

GitHub Actions and Automation

Welcome to automation with GitHub Actions! This is my second most-loved GitHub feature
(second to GitHub Copilot @)). I've always been a proponent of DevOps and the practices of
continuous integration and continuous delivery. It felt magical that I could automate the testing
and deployment of my apps, and even the provisioning of infrastructure in the cloud. I fell in

love with the “everything as code” concept (we will explore this in more detail in this chapter).

However, a more magical feature, GitHub Copilot, blew me away completely less than 3 years
ago. GitHub Copilot and Generative AI (GenAlI) have fundamentally revolutionized the way we
build software today. We will discuss GitHub Copilot in Chapter 12, Enhancing Development with
GitHub Copilot, but let’s focus on GitHub Actions for now.

In this chapter, we will discuss GitHub’s approach to continuous integration, continuous delivery,
and automation. We will examine what really makes GitHub Actions a unique automation tool.

Let’s get right into it.
We will cover the following main topics:

e Introduction to GitHub Actions
e Creating custom workflows

e CI/CD with GitHub Actions

Technical requirements

To conduct the labs in this chapter, you will need the following:

e A working computer

e Anindividual GitHub account

202 GitHub Actions and Automation

You will find the corresponding code files in this folder of the book repository: https://github.

com/PacktPublishing/GitHub-Foundations-Certification-Guide

Introduction to GitHub Actions

When you write software, you want to test its functionality to be sure it meets the intended goal
and returns the expected results. In addition, you want to scan the software for potential vulner-
abilities that could be exploited by bad actors. Finally, you want to deploy it to production safely
and securely into the hands of the end users. GitHub Actions aids the automation of code builds,
unit tests, code quality checks, vulnerability and static application security tests, deployment to
various environments (e.g., dev, staging, production, etc.,), packaging, and the distribution of

your software in a seamless, fully integrated manner.

GitHub Actions is a powerful automation tool integrated into GitHub, designed to help developers
automate their workflows directly within their repositories. It enables continuous integration
and continuous deployment (CI/CD), automating tasks such as testing, building, and deploying
code. Unlike many other CI/CD automation tools, GitHub Actions does not require building auto-
mation pipelines with the user interface but rather through text-based instructions using YAML,
a popular form of markup language used for writing configuration files and similar scripts. This
concept of using text-based scripts to instruct a CI or CD automation pipeline is called pipeline-

as-code (more about it in the next section).
GitHub Actions has key benefits, some of which include the following:

e Integration with GitHub: Seamlessly integrates with GitHub repositories, making it easy

to trigger workflows based on repository events
e Customizability: Highly customizable workflows using YAML syntax
e Scalability: Supports complex workflows with multiple jobs and steps

¢ Community and Marketplace: Access to a vast library of pre-built actions in the GitHub

Marketplace

How Pipeline as Code supports GitHub Actions

Pipeline as Code is a practice in software development where the entire CI/CD pipeline is de-
fined and managed using code. This approach treats the pipeline configuration as part of the
application’s source code, allowing it to be version-controlled, reviewed, and audited just like

any other code.

https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide

Chapter 8 203

Continuous Delivery versus Continuous Deployment

You will notice, as I have written in this chapter thus far, the CD in CI/CD can both
\E/\/ mean Continuous Deployment and Continuous Delivery. They are slightly different
butused in the same acronym. Continuous delivery and continuous deployment are
both practices in the CI/CD pipeline, but they differ in their approach to releasing

software.

Continuous delivery ensures that code changes are automatically tested and prepared for a re-
lease to production, but the actual deployment requires manual approval. This allows teams to
deploy updates at their discretion. In contrast, continuous deployment takes automation a step
further by automatically deploying every change that passes all stages of the production pipeline,
including testing, directly to production without any manual intervention. This means that new
features, bug fixes, and improvements are delivered to users as soon as they are ready, providing

a faster feedback loop and more frequent updates.
Pipeline as code brings several benefits. Let’s consider some of them:

1. Version control: Changes to the pipeline can be tracked, reviewed, and rolled back if

necessary

2. Consistency: Ensures that the same pipeline is used across different environments, re-

ducing the risk of discrepancies

3. Automation: Automates the build, test, and deployment processes, leading to faster and
more reliable software delivery

4. Collaboration: Facilitates collaboration among team members, as pipeline changes can

be reviewed and approved through pull requests

So, how does GitHub Actions support pipeline as code? With GitHub Actions, you can define
your CI/CD pipelines using YAML files, which are stored in your repository under the .github/
workflows directory of the repo. These YAML files describe the steps and conditions for your
workflows, allowing you to version control your pipeline configurations just like any other code.
This approach integrates seamlessly with GitHub, making it easy to automate your build, test,

and deployment processes directly from your repository.

Let’s take a quick look at some key components and terminologies of GitHub Actions.

204

GitHub Actions and Automation

Key components of GitHub Actions

Workflows: A workflow is a configurable automated process made up of one or more
jobs. Workflows are defined using YAML syntax and are stored in the . github/workflows

directory of your repository. They can be triggered by events, manually, or on a schedule.

Events: These are specific activities in your repository that trigger workflows. All work-
flows must be triggered by an event if automated or can be manually triggered. Examples

include pushing code, opening a pull request, or creating an issue.

Jobs: Ajobis a set of steps in a workflow that execute on the same runner (see Runners for
definition). Jobs can run sequentially or in parallel and can have dependencies on other jobs.
Steps: Steps are individual tasks within a job. Each step can run a script or an action. Steps

are executed in order and can share data with each other.

Actions: Actions are reusable units of code that perform specific tasks. They can be cre-
ated by you or used from the GitHub Marketplace. Actions help reduce repetitive code in

your workflows.

Runners: Runners are servers that execute your workflows (other CI/CD platforms may call
these agents). These runners can be either virtual machines (VMs) or containers. GitHub

provides hosted runners (mostly VMs) with Linux, Windows, and macOS environments,

or you can use self-hosted runners.

In the following section, we will delve into the inner workings of a workflow.

Events that trigger a workflow

As stated previously, workflows are defined by YAML files in your repository. They consist of one

or more jobs that run in response to specific events. The YAML syntax is a pre-defined structure

the file must follow. The basic structure includes name, on (events), jobs, and steps.

What are the possible values for an event trigger? Let’s look at the most widely used ones:

Event Name Description

push Triggered on a push to a branch.

pull_request Triggered on events related to pull requests.

Issues Triggered on issue-related events.

issue_comment Triggered when a comment is created or edited on issues or

pull requests.

Chapter 8

205

release

Triggered when a release is published, edited, or deleted.

schedule

Triggered on a scheduled time using cron syntax.

workflow_dispatch

Manually triggered via the GitHub UL

repository_dispatch

Triggered by a repository dispatch event.

check_run

Triggered on check run events.

check_suite

Triggered on check suite events.

deployment

Triggered on deployment events.

deployment_status

Triggered on deployment status changes.

fork Triggered when a repository is forked.
create Triggered when a branch or tag is created.
delete Triggered when a branch or tag is deleted.
public Triggered when a repository is made public.
status Triggered on status changes of a commit.
watch Triggered when someone stars a repository.

workflow_run

Triggered when a workflow run is requested or completed.

Table 8.1: List of some commonly used events that trigger a workflow

For more information on events that trigger a workflow, visit: https://docs.github.com/en/
actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-

workflows

\ 7/

Certification tip

usually tell you. Get familiar with the most common ones.

-/@_ Focus on how to interpret the events that trigger a workflow. The keyword will

https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows

206 GitHub Actions and Automation

Let’s discuss the contents of jobs that are executed as soon as the events are triggered and where

they run.

Jobs, steps, and runners

As soon as the event is triggered, the jobs in the workflow will begin execution. A job is a parent
of one or more steps and a step is the smallest indivisible executable task in a workflow. The

following diagram illustrates the relationship between all these components:

Trigger Workflow

—

Webhook
Pull request
Issue
Push
Workflow
Release

Schedule

L ELITE]

Figure 8.1: Relationship between workflow components

Each step can run commands or use actions, that is, other GitHub Actions workflows defined
elsewhere by you, by GitHub, or any other third party that have been made accessible to the

current one.

Each job in the workflow is then executed by a runner. When there are multiple jobs to be ex-
ecuted, they are queued up until the runner picks them. A runner can be Linux, Windows, or
MacOS, running on a VM or container. Runners can belong to a runner group, which are logical
groupings that allow you to categorize multiple runners that have the same specifications and
behavior. The benefit of using a runner group is that it aids scaling such that any idle runner in
the group can immediately pick any waiting job to execute rather than all jobs being queued up

waiting for one single runner.

Chapter 8 207

The following image illustrates how the jobs in a workflow are picked up by runners to be executed.

The specification of the runner can be pre-specified.

Runner group

Runner 1 Runner 1b

[Execute steps] Execute steps
[Log results] Log results

Runners can be

Runner 2 =ﬁ.ii ‘ C)

[Execute steps]

[Log results]

Figure 8.2: How runners pick up jobs

A runner can be perpetual (always-on) or ephemeral. Ephemeral runners are a type of runner
that is designed to run a single job and then automatically unregister themselves. This ensures
that each job runs in a clean environment, which is particularly useful for maintaining security
and consistency. Ephemeral runners are more widely used and recommended as good practice
because they ensure a clean, secure environment for each job, reducing the risk of contamination

and improving consistency. A runner can be GitHub-hosted or self-hosted.

GitHub-hosted versus self-hosted runners

A GitHub-hosted runner is a virtual machine managed by GitHub that comes pre-configured
with commonly used software, tools, and packages, providing a quick and easy setup for running
workflows. In contrast, a self-hosted runner is managed by you, offering greater customization

and control over the hardware, operating system, and software environment used to run your jobs.

GitHub-Hosted runners are autoscaling by default — meaning multiple runners (VMs) are pro-
visioned to run and execute jobs concurrently, as many as are ready to be executed, increasing
(scaling out) and decreasing/deprovisioning (scaling in) the number of available runners as the
need dictates, automatically, without manual intervention. This means virtual machines don’t

have to be powered on perpetually, consuming energy, network, and data resources.

208 GitHub Actions and Automation

On the other hand, self-hosted runners don’t autoscale by default. You will need to leave them
powered on or use a third-party or community-backed autoscaling technology such as GitHub
Actions Runner Controller or the Philips Labs autoscalers. For more information about autoscaling
self-hosted runners, visithttps://docs.github.com/en/actions/hosting-your-own-runners/

managing-self-hosted-runners/autoscaling-with-self-hosted-runners.

In the next section, we will examine the workflow syntax in a YAML file.

Workflow syntax and file structure

Aworkflow is triggered by an event denoted by a corresponding event name (keyword) following
an on prefix. Afterwards, the instructions on the jobs to execute as well as on which runners to

execute them follow.

Here is a sample workflow YAML file.

.github/workflows/triage-an-issue.yml

name: Label issues
on:
issues.
types:
- reopened
- opened
jobs:
label_issues;
runs-on: ubuntu-latest
permissions:
issues: write
steps:
- run: echo "Hello World"
- uses: actions/github-script@vé
with:
script: |
github.rest.issues.addlLabels({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
labels: ["triage"]
})

Figure 8.3: Sample GitHub Actions workflow written in YAML

Hereis a filenamed triage-an-issue.yml stored in the workflows directory inside the . github
directory of the repository. Also, all workflow files must be stored in the same manner in the

.github directory.

https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-runners

Chapter 8 209

Note

\E/ The first line showing the filename is not part of the YAML file but is only included

in this case to show you the file path of this example workflow file.

The first line of the workflow file is the title. This is preceded by the keyword name: followed by
the title.

.github/workflows/triage-an-issue.yml

Title > name: Label issues
on:
Event > issues:
types:
- reopened
- opened
TS
label issues:
Runner > runs-on: ubuntu-latest
PETMisSsionse
issues: write
SLC S .
In-line command > - run: echo “Hello World”
T : - UsSes: acrilons/gitnub-script@vée
Public action > with: & ;
script: |
github.rest.issues.addlLabels({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
labels: ["triage"]
})

Job name >

Figure 8.4: Some common lines in a workflow’s YAML file and their descriptions

Up next s the event, which is preceded by the keyword on: followed by the event type (one of the
event types we discussed earlier). Afterwards, the jobs are defined. All jobs must come indented
under the parent keyword, jobs:. It is under this that all jobs are defined. In this example, the
firstjobisnamed label_issues, and its steps are defined indented under it. You will see the steps

to be executed under the job prefixed with a hyphen (-). Every hyphen denotes a separate step.

This example shows a workflow that is triggered whenever a GitHub issue is opened or reopened
in the GitHub repository. Ithas one job named label_issues and thisjob runs on GitHub’s latest

Linux Ubuntu runners. Let’s explain some of the lines in this configuration.

210

GitHub Actions and Automation

Lab 8.1: Getting started with GitHub Actions

Let’s do some lab exercises to see how this works.

Setting up your first workflow

Create a new workflow file in the . github/workflows directory:

1.

2.

3.

4.

Navigate to your repository on GitHub.

Create a new directory named . github in the root of your repository if it doesn’t already

exist.
Within the . github directory, create another directory named workflows.

Inside the workflows directory, create a new file named first-workflow.yml.

Defining a simple workflow that runs a basic command, such

as printing “Hello, World!”
Apply the following steps:

1

2.

Open the first-workflow.yml file in a text editor.
Add the following YAML code to define a simple workflow:
name: First Workflow
on: [push]
jobs:
hello world_job:
runs-on: ubuntu-latest
steps:
- name: Print Hello, World!
run: echo "Hello, World!"
Save the file and commit it to your repository.
Push the changes to GitHub. This will trigger the workflow to run whenever you push
changes to the repository.
Certification tip
\ ! 7/
/@\ You may be given the content of a simple workflow YAML file and asked to choose

from the options in what cases the workflow will run.

Chapter 8 211

Exploring the GitHub Actions Marketplace
Browse the GitHub Marketplace to find pre-built actions that can be integrated into your work-

flows:

1. Go to the GitHub Actions Marketplace by navigating to GitHub Marketplace (https://
github.com/marketplace).

2. Use the search bar to find actions that suit your needs. For example, you can search for

“linting” or “testing” actions.

3. Explore the available actions by reading their descriptions, usage instructions, and reviews.

Incorporating these actions into your workflow

Learning how to incorporate these actions into your workflow files helps to extend functionality:

1. Selectan action from the marketplace that you want to use —for example, choose a popular
action such as actions/checkout.

2. Readtheusageinstructions provided on the action’s page. This typically includes how to
reference the action in your workflow file.

3. Modify your workflow file to include the action. For example, to use the actions/checkout

action, update your first-workflow.yml file as follows:

name: First Workflow
on: [push]

jobs:
hello world job:

runs-on: ubuntu-latest

steps:
- name: Checkout repository

uses: actions/checkout@v2

- name: Print Hello, World!

run: echo "Hello, World!"

4. Savethe changes and push them to GitHub. The workflow will now include the pre-built

action.

https://github.com/marketplace
https://github.com/marketplace

212 GitHub Actions and Automation

5. We discussed earlier how a step in a job can either run commands or use other actions
from GitHub or third parties. These other actions created by third parties are hosted in

the GitHub Actions marketplace.

Certification tip

N\ ! d . .
-@— Expect to encounter some questions about the GitHub Marketplace. Spend some
4 N
g time understanding its purpose, what various components are available on it (e.g.,

actions, apps, GenAl models, etc.), and who can host/publish on it.

The GitHub Actions Marketplace

The GitHub Actions Marketplace is a repository of pre-built actions created by the community
and GitHub itself. These actions can perform a wide range of tasks, from code linting and test-
ing to deployment and notifications. By leveraging these actions, you can save time and avoid

reinventing the wheel.

To integrate an action from the marketplace into your workflow, you need to reference it in your
workflow file using the uses keyword. Each action typically comes with detailed documentation
on how to configure and use it. This might include specifying input parameters, setting environ-

ment variables, or combining multiple actions to create a more complex workflow.

Many pre-built actions are highly configurable. You can customize them by providing input pa-
rameters that tailor the action to your specific needs. For example, a testing action might allow

you to specify the version of a testing framework or the directory containing your tests.

You can also combine multiple actions in a single workflow.

Combining actions

One of the powerful features of GitHub Actions is the ability to combine multiple actions within
a single workflow. This allows you to create sophisticated workflows that can handle complex
CI/CD pipelines. For instance, you might use one action to check out your code, another to set up

your programming environment, and a third to run tests or deploy your application.

By exploring and utilizing the GitHub Actions Marketplace, you can significantly enhance the

capabilities of your workflows, making your development process more efficient and streamlined.

Up next, we will look at best practices considerations when creating a workflow.

Chapter 8 213

Best practices in creating workflows

Designing workflows involves several key steps. First, it’s essential to plan and structure your
workflows by identifying your goals. These goals could include automated testing, deployment,
or code quality checks. Next, define the triggers for your workflow, such as a push, pull request,
or scheduled event. Once the triggers are set, outline the workflow steps, breaking them down

into individual jobs and ensuring each step logically follows the previous one.

When designing workflows, it’s important to follow best practices. Create modular workflows
that are reusable and easy to maintain. Write clear and concise workflow files, adding comments
to explain complex steps. Additionally, optimize your workflows to minimize execution time and

resource usage.

Writing workflow files requires an understanding of YAML syntax and conventions. Start with
the basic structure of a YAML file, including proper indentation and key-value pairs. Define jobs
and steps within the workflow file, specifying the actions to be performed. Each job can run on
specific runners, such as ubuntu-1latest, and include multiple steps. These steps might involve

running commands, using actions, or setting environment variables.

Using pre-built actions from the GitHub Actions Marketplace can save time and effort. Explore
the marketplace to find actions that suit your needs and learn how to integrate them into your
workflow files by referencing them in your steps. Customize these actions by configuring input

parameters and combining multiple actions to create complex workflows.

Creating custom actions can be done using JavaScript or Docker. For JavaScript actions, set up
the action metadata and write the necessary code. For Docker actions, define the Dockerfile
and action metadata. Once your custom actions are ready, you can publish them to the GitHub

Marketplace for others to use. Remember to version your actions and maintain them over time.

Debugging and testing workflows is crucial to ensure they function correctly. Learn to identify
and understand errors in your workflow runs and explore common troubleshooting techniques to
resolve issues. Use tools such as act to test your workflows locally before pushing them to GitHub,

and simulate workflow runs to verify they work as expected in different scenarios.

In an SDLC, the main use cases for GitHub Actions are in the CI and CD processes and stages. In
the next section, we will discuss a few things about implementing CI/CD practices with GitHub

Actions.

214 GitHub Actions and Automation

Cl/CD with GitHub Actions

Continuous Integration (CI) is the practice of automatically integrating code changes from mul-
tiple contributors into a shared repository several times a day. This process includes automated
testing to ensure new code changes do not break the existing codebase. Continuous Deployment
(CD), on the other hand, is the practice of automatically deploying every change that passes the

CI process to production. This ensures that the software is always in a deployable state.

CI/CD offers several benefits in software development. Improved code quality is one of the primary
advantages, as automated tests catch bugs early in the development process. Faster delivery is
another benefit, as automated deployments speed up the release cycle. Additionally, automation

reduces the need for manual testing and deployment, freeing up developer time for other tasks.

Setting up Continuous Integration (Cl)

Here are some CI practices.

e Automating tests and builds: To set up continuous integration, start by automating tests
and builds. Define test jobs in your workflow to run automated tests using frameworks
such as Jest, Mocha, or JUnit. Build automation involves setting up jobs to build your

application, ensuring that it compiles correctly before deployment.

e Integrating with testing frameworks: Integrate your CI process with various testing
frameworks. Run unit tests to verify individual components of your application. Execute
integration tests to ensure different parts of your application work together as expect-
ed. Measure code coverage to ensure that your tests cover a significant portion of your

codebase.

Implementing Continuous Deployment (CD)

CD practices include the following:

e Automating deployment processes: Automate your deployment processes by defining
jobs in your workflow to deploy your application to various environments, such as stag-
ing or production. Implement deployment strategies such as blue-green deployments or

canary releases to minimize downtime and risk.

e Deploying to various environments: Deploy your application to a staging environment
for final testing before production. Automate the deployment to the production environ-

ment to ensure a smooth and reliable release process.

Chapter 8 215

Advanced Cl/CD techniques

There are also some advanced techniques. The most commonly used ones are as follows:

e Managing secrets and environment variables: Use GitHub secrets to securely store and
manage sensitive information such as API keys and passwords. Define environment vari-

ables in your workflows to configure different environments.

e Using matrix builds for multiple configurations: Set up matrix builds to run your tests
and builds across multiple configurations, such as different operating systems or versions

of a programming language. Run jobs in parallel to speed up the CI/CD process.

e Monitoring and maintaining CI/CD pipelines: Access detailed logs of your workflow
runs to diagnose and fix issues. Set up alerts and notifications to stay informed about

the status of your workflows.

¢ Maintaining and updating CI/CD pipelines: Regularly review and update your CI/CD
pipelines to incorporate new best practices and tools. Continuously improve your CI/CD

processes based on feedback and performance metrics.

That’s it! We have just covered the fundamentals of GitHub Actions. If you are interested in learn-
ing about more advanced concepts and use cases for CI/CD, access the resources in the Useful

links section.

Summary

In this chapter, we delved into the world of GitHub Actions and automation, a feature I abso-
lutely love. We explored GitHub’s approach to continuous integration, continuous delivery, and
automation, highlighting what makes GitHub Actions a unique tool. We discussed how GitHub
Actions aids in automating code builds, unit tests, code quality checks, vulnerability scans, and

deployments to various environments, all in a seamless and integrated manner.

We explained the concept of Pipeline as Code, where the entire CI/CD pipeline is defined and
managed using code, allowing it to be version-controlled, reviewed, and audited just like any
other code. We also differentiated between continuous delivery and continuous deployment,

emphasizing their roles in the CI/CD pipeline.

The chapter outlined the key benefits of Pipeline as Code, such as version control, consistency,
automation, and collaboration. We described how GitHub Actions supports this approach by
allowing us to define our CI/CD pipelines using YAML files stored in our repository. We also
highlighted integration with GitHub, customizability, scalability, and access to a vast library of
pre-built actions in the GitHub Marketplace.

216 GitHub Actions and Automation

We then moved on to the key components and terminologies of GitHub Actions, including work-
flows, events, jobs, steps, actions, and runners. We provided a detailed explanation of how work-
flows are defined by YAML files and how they consist of jobs that run in response to specific events.

We also listed the possible events that can trigger a workflow.

The chapter further explained the differences between GitHub-hosted and self-hosted runners,
their benefits, and how they can be used to execute jobs in a workflow. We also discussed the

importance of using ephemeral runners for maintaining security and consistency.

Finally, we provided practical lab exercises to help us get started with GitHub Actions, including
setting up our first workflow and exploring the GitHub Actions Marketplace. We emphasized the
importance of best practices in creating workflows, such as planning and structuring workflows,
writing clear and concise workflow files, and optimizing workflows to minimize execution time

and resource usage.

By the end of this chapter, we had gained a comprehensive understanding of GitHub Actions and

how to leverage it for automating our software development processes.

In the next chapter, we will discuss yet another great feature of GitHub that aids collaboration

and social coding — GitHub Discussions.

Test your knowledge
1. Which of the following is NOT listed as a key benefit of Pipeline as Code?

a. Version control
b. Consistency
c. Integrity

d. Automation
2. Inthe context of GitHub Actions, what is the purpose of an ephemeral runner?

To run multiple jobs concurrently on a single runner.

b. To ensure each job runs in a clean environment by unregistering itself after a
single job.
To provide a perpetual environment for continuous integration.

d. To allow manual intervention during job execution.

Chapter 8 217

3. Which of the following is not an event that triggers a workflow pipeline?

a. schedule

b. pull
c. push
d. release

Useful links

e Training for GitHub on MS Learn: https://learn.microsoft.com/en-us/training/

github/#:~:text=GitHub%20Actions, -Gain%20the%20skills
e Events that trigger workflows: https://docs.github.com/en/actions/writing-
workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows

e Autoscaling with self-hosted runners: https://docs.github.com/en/actions/hosting-
your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-

runners

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://learn.microsoft.com/en-us/training/github/
https://learn.microsoft.com/en-us/training/github/
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-when-your-workflow-runs/events-that-trigger-workflows
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/autoscaling-with-self-hosted-runners
https://packtpub.com/unlock

Engaging with the Community
through GitHub Discussions

Welcome to the social chapter! GitHub thrives on and embodies collaboration. It’s known for
making software development feel more social, encouraging teams to work together, build to-
gether, and remove silos. In this chapter, we will be discussing another fantastic feature of GitHub

— GitHub Discussions — a collaborative and social tool for fostering developer communities.
We will cover the following main topics:

e Introduction to GitHub Discussions
e Starting a GitHub discussion
e Bestpractices for community engagement

e Leveraging discussions for project feedback

Technical requirements
For the lab in this chapter, you will need the following:

e A GitHub Individual account

e Arepository where you have administrative access

Introduction to GitHub Discussions

GitHub Discussions is a powerful feature designed to foster community engagement within a
GitHub repository or organization. It provides a dedicated space for conversations, reducing the

burden of managing active work in issues and pull requests.

220 Engaging with the Community through GitHub Discussions

Itallows developers to create and participate in conversations without needing third-party tools.
Discussions can be used to ask and answer questions, share information, make announcements,

and conduct conversations about a project.

GitHub Discussions can either be at the repo level or the organization level.

\/‘n/' By default, Discussions is not activated in a GitHub repo. You must activate it first.
We will examine how to do this in the practical section following this introduction.

Let’s examine some of its key features.

= o vercel [mext]s Q, Type {F1to search &5 - e T
<> Code (3 lssues 3k 1 Pullrequests 575 L3 Discusslons (2 Actlons (0 Securty 14 | insights
© & 0
Companies [Sites using Next.js Who's Hiring { Hire Me on Vercel RFC: "forbidden” and "unauthorized”
&% show and tell - timneutkens Community M RFC- ztanner
#& show and tell - pawlean
Q. is:open [} Sort by: Latest activity - Labal - Filter: Opan ~ Bew discussion
Categories Discussions
|L'J; View all discussions ey * :ntphtstenﬂlnne with custom server.js m @

e ik on Pk 20, 3072 in Hulp - Unmrawsrmd

i ADD Router

* Help F P How to render on the server without returning hydrated data next? This will
increase the size and volume of HTML and document files ™| o
Ideas parlay36 asked 2 das agn in Heip - Unanswernd
& Polls
- pFC T < Should create-next-app default to using ESLint? B o
J& Show and tedl
Support to set <html lang /> from metadata?
gy 3 a
= \ilaKopacky ssked on My & 2023 Agp Rauter - Unanswered & 9w
Maost helpful L 30 daw
© icvlosaph 8= Y o TMPMun build error Jest worker encountered 1 child process exceptions,
exceeding retry limit E @15

Figure 9.1: Cross-section of next.js Discussion forum

Threaded conversations

Threaded conversations are a feature designed to keep context intact and conversations on track.
This functionality allows users to create and participate in nested discussions, making it easier
to follow and manage complex conversations. They help maintain the flow of dialogue by group-
ing related comments together. This structure ensures that responses are directly connected to
the original comment, making it easier to follow the conversation and understand the context.
Threaded conversations provide a dedicated space for open-ended topics, brainstorming, and
community support. Unlike GitHub issues, which focus on task tracking, discussions are designed

for more general conversations.

Chapter 9

221

@ ljharb

2 weeks ago Collaborator

https:j/nodejs.org/enfdownload/package-manager may be helpful.

1) HE)

. 05-Sc

ratch 2 weeks ago Auther

Oh...but I'm not familiar with WinGet... can | also click on the link Node.js also includes npm (10.9.0) and get it there?

&

@ ljharb

2 weeks ago Collaborator

Mo, that just links to npm's release page.

@

. 0S-Scratch 2 weeks ago Author

But what if | click on releases and download it there?

@

6 liharb

Then t

)]

Write a reply

2 weeks ago Collaborator

hat would download npm, which generally shouldn't be installed separately from node.

Figure 9.2: Threaded conversations show a timeline of various comments and replies

Categories and custom categories

Categories help teams organize conversations for their community members. All discussions

i replies

must be created in a category. Here is a list of the default categories that come in a discussion:

Category Description
<0 Announcements Updates from maintainers
) General Chat about anything and everything here

Q Ideas

Share ideas for new features

O polls

Take a vote from the community

A Q&a

Ask the community for help

@ Show

and tell Show off something you've made

Table 9.1: List of default categories in a GitHub discussion

Repository admins and people with write access can create custom categories to better organize

discussions. Custom categories can have unique names, emojis, and descriptions to clearly state

their purp

ose.

222 Engaging with the Community through GitHub Discussions

Polls

Polls on GitHub Discussions are a great way to engage with your community and gather opinions
on various topics. They allow members of the developer community to vote and interact on an
idea without having to comment. This feature is particularly useful for gathering feedback on

new ideas, features, or project directions.

Repo admins can create polls for the community to vote on, as well as locking polls to prevent
further voting when required. Participating in polls from anywhere is also possible via the GitHub

Mobile app.

Changing the license of the code examples in the docs to public dom
universal" #53740

Isam-Lakehal started this conversation in Polls

ﬁ Isam-Lakehal on Jul 6

Do you think that the code examples in the docs should be licensed under the public domain, thus anyone can learn from them without
worrying that he might use the same code in his projects and violate the copyright?

Changing the license of the code examples in the docs to public domain "CCO 1.0 universal"

) | agree

) | don't agree

2votes - Show Results Vote

12) @

Figure 9.3: Polls help to gather feedback

Understanding how Discussions improves collaboration is key to answering certification questions

about GitHub’s community features. For example, they might ask something like the following:
“Which of the following is a primary use case for GitHub Discussions?”

e Submitting a pull request
e Tracking bugsin a repository
e Gathering feedback and conducting community discussions

e Assigning tasks to team members

Chapter 9 223

You might be wondering how Discussions posts, issues, and pull requests are so similar in their
formatting. This is because they all use the markdown format and, quite frankly, I wouldn’t be
surprised if they were built from the same codebase or base class. Now let us look at the main

differences and in what scenarios to use them.

Here are some ways in which discussions differ from issues and pull requests.

Feature GitHub Discussions GitHub Issues GitHub Pull requests
. Bug tracking, feature
Community engagement, Code changes,
Purpose . . requests, task . .
brainstorming, Q&A collaboration, review
management

Task-based with

. .) Code diffs, inline
Format Threaded discussions assignees, labels,

. comments, approvals
and milestones

Voting/Polls? Yes # No X No
. . Reporting and L
Open-ended discussions, o Reviewing and
Best For tracking issues, .
feedback, engagement . merging code
planning work

Table 9.2: GitHub Discussions versus issues versus pull requests

In the next section, we will examine practical steps for starting a discussion — time for some

hands-on practice.

Starting a GitHub discussion

Engaging with the community is a crucial aspect of any successful open source project. GitHub
Discussions provides a platform for project maintainers and contributors to communicate, share
ideas, and solve problems collaboratively. In this section, we will explore how to initiate a discus-
sion on GitHub, including setting up discussion categories, creating discussion threads, and best

practices for framing your questions or topics to encourage meaningful participation.
GitHub Discussions is available both at the organization level and at the repository level.
Enabling GitHub Discussions
Let’s first activate GitHub Discussions at the repo level.

1. Navigate to your repository

a. Onceloggedin, navigate to the repository where you want to enable Discussions.

224 Engaging with the Community through GitHub Discussions

b. You can find your repositories by clicking on your profile icon in the top-right

corner and selecting Your repositories.
2. Access repository settings

a. In your repository, click on the Settings tab located at the top of the page, next
to the Insights tab.

3. Enable Discussions

a. Inthe Settings menu, scroll down to the Features section.
b. Look for the Discussions option. It should be listed along with other features such
as Issues, Wikis, and Projects.

c. Check the box next to Discussions to enable this feature for your repository.

Issues
Issues integrate lightweight task tracking into your repository. Keep projects on track with issue labels and milestones, and
reference them in commit messages.

Get organized with issue templates

Give contributors issue templates that help you cut through the noise and Set up templates

help them push your project forward.

(] Sponsorships
Sponsorships help your community know how to financially support this repository.

Display a "Sponsor" button

Add links te GitHub Sponsors or third-party methods your repository Set up sponsor button
accepts for financial contributions to your project.

[Discussions

Discussions is the space]ur your community to have conversations, ask guestions and post answers without opening issues.

Get started with Discussions
Set up discussions

Engage your community by having discussions right in your repository,
where your community already lives

Figure 9.4: The Discussions feature must be enabled in the settings of the repo

Chapter 9 225

When you enable the checkbox in the settings, you can see the Discussions tab in the repository.

That’s it! You have successfully enabled GitHub Discussions for your repository. This feature will

help you engage with your community, gather feedback, and foster collaboration.

Next, we will look at creating categories, then beginning a thread, and consider a few tips for

fostering engagement.

Setting up discussion categories

After enabling Discussions, you can configure categories to organize your discussions:

1. Click on the Discussions tab that now appears at the top of your repository page.

2. Click on the pencilicon (/) at the top of the left navigation of Categories to edit,

create, and customize categories such as General, Q&A, Ideas, and so on.

3. ClickNew category to create a new one, or the editicon (/°) next to an existing one

to modify. Add a name and description for each category and save your changes.

4. You can consider creating sections to group two or more categories together. To
do this, click on New section, give the section a name (for example, “Community
Topics” or “Technical Help”), and then assign relevant categories to it. This helps

users navigate discussions more easily by topic or purpose.

Creating a new discussion thread

Let us now start a new discussion.
1. Start a new discussion

Navigate to the Discussions tab: Click on the Discussions tab in your repository.

b. Click on New discussion: This button is usually located at the top right of the

Discussions page.

c. Selecta category: Choose the Ideas category by clicking on Get started next to it,

to indicate that this discussion is about new feature ideas.

d. Enter atitle: For example, Feedback Needed: New Dark Mode Feature.

226 Engaging with the Community through GitHub Discussions

e. Write the body: Provide a detailed description of the feature —here’s an example:

We need your feedback :speech_balloon:
Hi everyone :wave: ,

We're considering adding a new dark mode feature to our
project and would love to get your feedback. The dark mode
will provide an alternative color scheme that is easier on
the eyes, especially in low-light environments.

Here are some specific questions we'd like your input on:
- Do you think a dark mode would be beneficial for our users?

- Are there any specific color schemes or design elements you
would like to see in the dark mode?

- Do you have any concerns or suggestions regarding the
implementation of this feature?

Your feedback is invaluable to us, and we appreciate your
time and input!

Thanks.

f. Publish the discussion: Click Start discussion to make your post live.

2. Formatting your post: Use Markdown to format your discussion posts. This includes

headings, lists, code blocks, and links to make your post clear and engaging.

Chapter 9 227

3. Tagging and labels: Apply relevant categories and labels to your discussion to help cat-

3

egorize and prioritize it. Labels can indicate the topic area of discussion (e.g., “repos,’

» «

“actions”) or its status (e.g., “open,” “resolved”).

Feedback Needed: New Dark Mode Feature #1

ayo-creator started this conversation in Ideas

-
-H- ayo-creator now Maintainer

We need your feedback

Hi everyone .1,

We're considering adding a new dark mode feature to our project and would love to get your feedback. The dark mode will provide an
alternative color scheme that is easier on the eyes, especially in low-light environments.

Here are some specific questions we'd like your input on:

« Do you think a dark mode would be beneficial for our users?
* Are there any specific color schemes or design elements you would like to see in the dark mode?

= Do you have any concerns or suggestions regarding the implementation of this feature?
Your feedback is invaluable to us, and we appreciate your time and input!

Thanks.

@ne
Figure 9.5: Preview of a newly published discussion

Verification

Before moving on, it’s important to verify that Discussions has been enabled and is functioning

correctly:

e Verify that the Discussions tab is visible and accessible in your repository

e Ensure thatyou can create new discussions and that they appear under the appropriate

categories

e Also, examine the properties and action links on the right-hand pane of the discussion

228

Engaging with the Community through GitHub Discussions

Framing questions and topics

Here are some tips for framing questions and topics in a way to get good engagement:

Clear and concise titles: Craft titles that are specific and descriptive. This helps attract

the right audience and sets clear expectations for the discussion.

Detailed descriptions: Provide sufficient context in your initial post. Include background
information, specific questions, and any relevant links or resources.

Open-ended questions: Use open-ended questions to encourage a broader range of re-

sponses and foster deeper discussions. For example, instead of asking “Is this feature

useful?”, ask “How do you think this feature could be improved?”

Encouraging participation and engagement

Itis good to encourage participation in a discussion:

Inviting contributions: Directly invite community members to join the discussion by
mentioning them or sharing the discussion link in relevant channels.

Responding promptly: Maintain active participation by responding to comments and
questions in a timely manner. This keeps the discussion lively and shows that you value
community input.

Acknowledging contributions: Recognize and appreciate valuable contributions. This

can be as simple as thanking participants or highlighting insightful comments.

By following these steps, you can effectively start and manage discussions on GitHub, fostering

a collaborative and engaged community around your project.

Up next, we will examine some other good practices in managing a developer community.

Examples of public GitHub discussions

Some popular public repositories that have good examples of GitHub Discussions usage include

the following:

nodejs/node: The Node.js project has active discussions on various topics, including
feature requests, questions, and Requests for Comments (RFCs)
kubernetes-sigs/cluster-api: Therepositoryis a subprojectof sig-cluster-lifecycle
that provides a Kubernetes-style declarative API and tooling to manage clusters
vercel/next.js: The Next.js repository has discussions for sharing ideas, feature requests,

and community questions

Chapter 9 229

e microsoft/vscode: The Visual Studio Code repository uses discussions for feature requests,

questions, and general conversations about the project

You can visit these repositories and explore their Discussions tab to see how they utilize this
feature for community engagement and project management. And of course, you can also visit
the ever-popular GitHub Community at https://github.com/orgs/community/discussions

and explore how we use it on GitHub.

I’'m not sure whether you have noticed in the book thus far, but sometimes repos
are written in the format owner/repo where owner can be the individual account
names or the organization account slug and repo is the name of the repository. These

\Q// two together uniquely identify any repository on GitHub. It is a shorthand for rep-
resenting the URL to the GitHub repo. For example,

«—

owner/repo=https://github.com/owner/repo, where the symbol indicates

that the shorthand format is equivalent to the full repository URL.

Best practices for community engagement

Building a vibrant and engaged community around your project requires more than just starting
discussions. Itinvolves fostering a welcoming environment, actively participating in conversations,
and recognizing valuable contributions. This section will cover the best practices for community

engagement.

Fostering a welcoming environment

Creating an inclusive and welcoming environment is the foundation of a successful community.

Using inclusive language is crucial. This means using respectful terms, avoiding jargon or slang
that might exclude or alienate members, and being generally mindful of the community’s unique-
ness. Regularly reviewing and updating your communication guidelines can help ensure they

promote inclusivity.

Establish clear community guidelines and a code of conduct that outline acceptable behavior,
contribution standards, and conflict resolution processes. Include these guidelines in your re-
pository’s README or a dedicated CONTRIBUTING.md file. Implement a code of conduct and outline
consequences for violations. GitHub provides a template that you can customize for your project.
Ensuring that these guidelines are visible and consistently enforced helps maintain a positive

community atmosphere.

https://github.com/orgs/community/discussions

230 Engaging with the Community through GitHub Discussions

Onboarding new members effectively can make a significant difference in their engagement.
Sending welcome messages to new members, introducing them to the community, and provid-
ing useful resources can help them feel comfortable. Creating starter guides or FAQs can assist
new members in understanding how to participate and contribute. Additionally, implementing
mentorship programs where experienced members guide newcomers can foster a supportive

environment.

Active participation and moderation

You can show engagement and leadership through regular interaction with the community, such
as scheduled check-ins or office hours, where maintainers are available to answer questions and

engage with members. This can significantly enhance community involvement.

Effective moderation techniques are necessary to keep discussions on-topic and respectful. Pro-
active moderation involves actively monitoring discussions and using GitHub’s moderation tools
to manage them, such aslocking threads or hiding inappropriate comments. Appointing trusted

community members as moderators can help manage discussions and enforce guidelines.

Handling spam and inappropriate content swiftly is crucial to maintaining a healthy commu-
nity environment. Using automated spam filters can reduce the amount of spam in discussions.
Providing clear mechanisms for community members to report spam or inappropriate content
ensures that issues are addressed promptly. Taking swift and decisive action against spam and

inappropriate content helps maintain the integrity of the community.

Handling conflicts and disagreements

Conflicts and disagreements are inevitable in any community. Addressing conflicts early and
constructively is essential for maintaining a positive atmosphere. Acting as a mediator to facili-
tate discussions between conflicting parties and finding common ground can help resolve issues.
Documenting conflict resolution processes and outcomes provides transparency and learning

opportunities.

Encouraging respectful debate is important for promoting diverse viewpoints. Setting clear guide-
lines for discussions and debates helps ensure that all voices are heard and respected. Encouraging
constructive feedback and discouraging personal attacks or inflammatory language fosters a

healthy environment for debate.

Chapter 9 231

Defining clear criteria for when issues should be escalated to maintainers or GitHub support is
part of effective conflict management. Outlining the steps for escalating issues, including who
to contact and what information to provide, ensures that conflicts are handled appropriately.

Following up on escalated issues provides resolution and maintains community trust.

Recognizing and rewarding contributions

Recognizing and rewarding valuable contributions is key to maintaining an engaged community.
Regularly highlighting and showcasing valuable contributions from community members in
newsletters, blog posts, or social media can motivate others to contribute. Featuring contributors

in spotlight posts or interviews recognizes their efforts and achievements.

Implementing a system of badges or other forms of recognition for active and valuable contrib-
utors can encourage participation. Creating leaderboards or other visual representations of top

contributors fosters friendly competition and recognition.

Organizing community events, such as Ask Me Anything (AMAs) or live discussions, where com-
munity members can interact directly with maintainers and ask questions, can enhance engage-
ment. Hosting hackathons, sprints, or other collaborative events encourages contributions and
strengthens community bonds. Celebrating milestones and achievements with the community,
such as project anniversaries or major releases, acknowledges the collective effort and fosters a

sense of accomplishment.

By implementing these best practices, you can build a vibrant and engaged community around
your project, fostering collaboration and continuous improvement. Now that we know the guide-
lines, let’s see how you can leverage the power of feedback from the community in your software

projects.

Leveraging Discussions for project feedback

Engaging with your community through GitHub Discussions is a powerful way to gather valu-
able feedback and insights. This section will guide you on how to effectively solicit, analyze, and

incorporate community feedback into your project development process.

Soliciting feedback from the community

To gather meaningful feedback, it’s essential to create dedicated threads specifically for this
purpose. Setting up these threads with clear instructions on the type of feedback you are seeking
can significantly enhance the quality of responses. For instance, you might have separate threads
for feedback on features, usability, and documentation. Pinning these threads to the top of the

Discussions page ensures they remain visible and accessible to all community members.

232 Engaging with the Community through GitHub Discussions

Surveys and polls are also effective tools for collecting structured feedback. By creating surveys
using tools such as Google Forms or SurveyMonkey, and sharing the links in your discussions,
you can gather detailed insights on specific topics. Additionally, GitHub’s built-in poll feature
allows you to quickly gauge community opinions on particular questions or decisions. Regularly
reviewing and analyzing the results of these surveys and polls will help you identify trends and

actionable insights.

Take, for example, GitHub’s request for feedback on Refreshed Pull Requests Commit Page
(https://github.com/orgs/community/discussions/137725). A dedicated discussion post was
created soliciting feedback. You will notice the word “feedback” clearly stated in the title. In addi-
tion, labels such as “Feedback Wanted,” “Product Feedback,” and that of the related product were
applied. This garnered great engagement with over a hundred responses and multiple threaded

conversations.

Refreshed Pull Request Commits Page Feedback #137725
':r'nanswened.': willsmythe ssked this guestion in Pull Requests

Category

willsmythe on Sep 4, 2024 adited -
o W Pull Requesta

The pull request commits page has been refreshed to improve performance, iImprove consistency with other pages, and to make the

experience more accessible! Labeis

Introcksce laser sprites #6250

94 participants

0©:3069280
gc@mma-@-n

Fin tate — -
@ o
P e

A laser spehes package.
L2 v

Update _gitgnare =
& g i

To minimize disruptions, the capabilities of the classic commits page have been maintained, with a few exceptions: you can now use arrow
keys to navigate the list of cormmits (Instead of § and k) and focus indicators have been improved for better visual distinction.

Mote: The roll-cut of this refreshed page will begin on September 4, 2024,

Opt out

To switch back to the classic commits page, disable the "New Pull Request Commits Experience” feature preview (earn more)

Figure 9.6: Example of a product feedback discussion

Encouraging honest feedback is crucial for the continuous improvement of your project. Foster
an environment where community members feel comfortable sharing their thoughts without
fear of negative repercussions. Offering options for anonymous feedback can further encourage
candid responses. Always acknowledge and thank contributors for their feedback, emphasizing

its value to the project’s development.

https://github.com/orgs/community/discussions/137725

Chapter 9 233

Analyzing and interpreting community input

Once you have collected feedback, the next step is to analyze and interpret it. Look for com-
mon themes and patterns to identify recurring issues or popular feature requests. Categorizing
feedback into different areas, such as bugs, feature requests, and usability issues, can make this
process more manageable. Visualization tools such as charts and graphs can help you interpret

and present feedback data effectively.

Prioritizing feedback is essential to ensure that the most impactful and feasible suggestions are
addressed first. Evaluate feedback based on its potential impact on the project and the feasibility
of implementation. Allowing the community to vote on feedback items can also help prioritize
what is most important to them. Integrating high-priority feedback into your project roadmap

and communicating these priorities to the community will keep everyone aligned and informed.

Utilizing data analysis tools and software can help manage and analyze large volumes of feedback.
Setting up automated reports to regularly summarize and highlight key feedback trends can save
time and ensure that important insights are not overlooked. Creating dashboards to provide a

real-time overview of community feedback and its status can also be beneficial.

Incorporating feedback into project development

Incorporating community feedback into your project development process is crucial for contin-
uous improvement. Establish a regular schedule for reviewing feedback and discussing it with
your development team. Develop action plans for addressing feedback, including timelines and
responsible team members. Maintaining transparency by regularly updating the community on

how their feedback is being addressed fosters trust and engagement.

Sharing your project roadmap publicly shows how community feedback is influencing develop-
ment priorities. Providing regular updates on the progress of roadmap items, highlighting com-
pleted tasks and upcoming milestones, keeps the community informed and involved. Involving

the community in roadmap discussions ensures alignment with their needs and expectations.

Adopting agile methodologies allows for iterative development and continuous improvement
based on feedback. Conducting beta testing with community members can gather early feedback
on new features and improvements. Continuously integrating feedback into the development

process helps refine and enhance the project.

234 Engaging with the Community through GitHub Discussions

Continuous improvement and iteration

Continuous improvement is a key aspect of successful project development. Maintain a detailed
changelog to document all changes and updates made to the project. Publish comprehensive
release notes for each new version, highlighting new features, bug fixes, and improvements. Use
GitHub Discussions, newsletters, or social media to announce updates and keep the community

informed.

Celebrating significant project milestones, such as major releases or anniversaries, with the com-
munity is important. Recognize and thank community members who have made significant
contributions to reaching these milestones. Hosting events or activities to celebrate milestones
and engage with the community can further strengthen the bond between maintainers and

contributors.

Finally, be open to changing project direction based on evolving community needs and feedback.
Encourage a culture of continuous learning and improvement within the project team. Establish
regular feedback cycles to ensure ongoing alignment with community expectations and project

goals.

By leveraging GitHub Discussions for project feedback, you can create a dynamic and responsive

development process that continuously evolves to meet the needs of your community.

Let’s summarise what we’ve learned.

Summary

In this chapter, we discussed how GitHub fosters collaboration and community engagement
through GitHub Discussions. We explored how this feature provides a dedicated space for conver-
sations, reducing the burden of managing active work in issues and pull requests. We highlighted
the importance of threaded conversations, which allow us to maintain the flow of dialogue by
grouping related comments together. This structure ensures that responses are directly connected

to the original comment, making it easier to follow the conversation and understand the context.

We also examined the use of polls to engage with our community and gather opinions on various
topics. This feature allows members to vote and interact on ideas without having to comment,
which is particularly useful for gathering feedback on new ideas, features, or project directions.
Additionally, we discussed the importance of categories and custom categories in organizing

conversations for our community members.

Chapter 9 235

Furthermore, we looked at practical steps to start a discussion on GitHub, including setting up
discussion categories, creating discussion threads, and best practices for framing questions or
topics to encourage meaningful participation. We emphasized the importance of fostering a
welcoming environment, actively participating in conversations, and recognizing valuable con-

tributions to build a vibrant and engaged community.

Finally, we explored how to leverage GitHub Discussions for project feedback, including solicit-
ing, analyzing, and incorporating community feedback into our project development process. By
following these steps, we aimed to create a dynamic and responsive development process that

continuously evolved to meet the needs of our community.

Test your knowledge
1. Which feature of GitHub Discussions helps maintain the flow of dialogue by grouping
related comments together?
a. Polls
b. Threaded conversations
c. Categories

d. Custom categories
2. Whatis the primary purpose of creating custom categories in GitHub Discussions?

a. Tolock polls and prevent further voting
b. To organize conversations for community members
c. To create nested discussions
d. To enable discussions at the organization level
3. Which of the following is not a recommended best practice for fostering community en-
gagement in GitHub Discussions?
Using inclusive language

a
b. Establishing clear community guidelines

o

Ignoring spam and inappropriate content

e

Recognizing and rewarding valuable contributions

236 Engaging with the Community through GitHub Discussions

Useful links

e GitHub Discussions: https://github.com/features/discussions

e Create ahome for your community with GitHub Discussions: https://github.blog/open-

source/maintainers/create-a-home-for-your-community-with-github-discussions/

e GitHub Topics — Forums: https://github.com/topics/forums

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://github.com/features/discussions
https://github.blog/open-source/maintainers/create-a-home-for-your-community-with-github-discussions/
https://github.blog/open-source/maintainers/create-a-home-for-your-community-with-github-discussions/
https://github.com/topics/forums
https://packtpub.com/unlock

Part 3

Leveraging GitHub

for Career Advancement

This section equips you with strategies to use GitHub for networking, showcasing your work, and

advancing your career in the tech industry. By the end of this part, you will have the knowledge to

build a strong GitHub presence, contribute to open source projects, and utilize GitHub’s features

to enhance your professional development.

This part of the book includes the following chapters:

Chapter 10, Building and Showcasing Your GitHub Presence
Chapter 11, Contributing to Open Source Projects

Chapter 12, Enhancing Development with GitHub Copilot
Chapter 13, Funding Your Projects with GitHub Sponsors

10

Building and Showcasing Your
GitHub Presence

A strong GitHub presence can give you an edge when applying for technical roles, especially
when employers want to see real examples of your work. This chapter will guide you through the
essential steps to create a professional and compelling GitHub profile that stands out to recruit-
ers and collaborators. You’ll learn how to effectively showcase your projects and contributions,
making your work easily accessible and impressive to potential employers. Additionally, we’ll
explore how to leverage GitHub Pages to build a personal portfolio that enhances your personal
brand. By the end of this chapter, you’ll have the tools and knowledge to optimize your GitHub
presence to help advance your career in the tech industry. While a polished GitHub profile isn’t
a direct test item, you will still come across questions regarding an advanced profile README in

personal repos or components of items that may be found on a profile page.
We will cover the following main topics:

e Crafting a professional GitHub profile
e Showcasing projects and contributions
e Utilizing GitHub Pages for personal branding

e Lab10.1: Creating a GitHub page to showcase your profile and skills

240 Building and Showcasing Your GitHub Presence

Technical requirements
e A GitHub Individual account

e Agood-looking photo suitable for a profile photo

Crafting a professional GitHub profile

Your GitHub profile is often the first impression you make on potential employers, collaborators,
and the broader tech community. A well-crafted profile not only presents your technical skills but
also reflects your professionalism and attention to detail. In this section, we will explore the key
elements of creating a standout GitHub profile, from selecting the right username to optimizing

your activity overview.

Profile basics

The foundation of a professional GitHub profile starts with the basics: your username, display
name, and profile picture. Your username should be professional and memorable, ideally incor-
porating your real name or a recognizable variation of it. This helps others easily identify you and
associate your contributions with your personal brand. Alongside your username, your display

name should be your full name, ensuring consistency across all professional platforms.

Your profile picture is another crucial element. Choose a high-resolution headshot where your
face s clearly visible (around 500 X 500 pixels and not more than 1 MB). The photo should be taken

in a professional or neutral setting, avoiding overly casual or distracting backgrounds.

Chapter 10 241

A friendly and approachable expression can make a positive impact, making you appear more

accessible to potential collaborators and employers.

)

Ayo

ayodejiayodele

Follow

Passionate and bubbly! A highly
experienced architect, software
engineer, DevOps evangelist and coach.
iLove efficient systems that improve
customer value & UX.

A3 66 followers - 2 following

GitHub (STAFF)
& Sydney, Australia

& https:ffau.linkedin.comfinfayodeji-ayodele

Figure 10.1: Sample GitHub profile showing basic details

242 Building and Showcasing Your GitHub Presence

Contact information

Including your contactinformation on your GitHub profile is essential for networking and profes-
sional opportunities. Add a professional email address, preferably one that includes your name,
to make it easy for others to reach out to you. Additionally, link to your other professional profiles,
such as LinkedIn or your personal website. This not only provides multiple ways for people to

connect with you but also reinforces your professional presence across different platforms.

Pinned repositories

Pinned repositories are a powerful feature on GitHub that allows you to highlight your best
work. Select a few high-quality projects that present your skills and align with your career goals.
Quality is more important than quantity here; it’s better to pin a few standout projects than
many mediocre ones. For each pinned repository, write a clear and informative description that
highlights the purpose and key features of the project. Use relevant tags to make your projects
more discoverable. For example, you can pin your prioritized repositories on your profile page.
To do this, visit your profile page. At the top of the Popular repositories or Pinned section, click

Customize your pins and select which repository to pin. Then click Save pins.

Pinned order updated. Custoemize your pins

H github-developer-metrics Public # [fantastic-demos/copilot-dotcom-chat-lab

Dashboards and report templates for reporting developer-related Public template

metrics inspired by some popular developer productivity frameworks.. Challenge exercises and hands-on laboratory on the Copilot Chat on
the GitHub.com UI,

wiu %2 1

Figure 10.2: Pinned repositories on a profile page

Chapter 10 243

Activity overview

Your activity overview, including your contribution graph and recent activity feed, provides a snap-
shot of your engagement on GitHub. A consistent and active contribution graph can demonstrate
your commitment to coding and open source projects. Focus on making meaningful contributions
rather than just increasing the number of commits. Regularly contribute to projects, whether

through code, documentation, or issue tracking, to keep your activity feed updated and relevant.

917 contributions in the last year m

Jun Jul Aug Sep Oct MNov Dec Jan Feb Mar Apr May Jun 2024
Mon |] [] " [L .
L] L 1] » 2023
Wed] B]] .
a8 @ |
Fi — e 2022
Learn how we count contributions Less 288 More
2021
@ayosupplychain a @PacktPublishing @community Mare 2020
Activity overview 1%

Code review
] Contributed to
ayosupplychain/my-packaging-...,
PacktPublishing/GitHub-Found... ,
ayosupplychain/helm-chart-libr...

55% p—
and 5 other repositories Commits .

8%
Pull requests

Figure 10.3: Sample contribution graph and activity overview

By paying attention to these details, you can craft a GitHub profile that not only promotes your
technical abilities but also presents you as a professional and dedicated member of the tech
community. This foundation will set the stage for effectively showcasing your projects and con-

tributions, which we will explore in the next section.

244 Building and Showcasing Your GitHub Presence

Showcasing projects and contributions

Effectively showcasing your projects and contributions on GitHub is crucial for demonstrating
your skills and experience to potential employers and collaborators. This section will guide you
through selecting the right projects, documenting them comprehensively, and highlighting your

contributions in a way that stands out.

Project selection

Focus on projects that align with your career goals and the skills you want to highlight. For in-
stance, if you are aiming for a role in web development, prioritize projects that demonstrate your
proficiency in relevant technologies such as HTML, CSS, JavaScript, and frameworks such as React
or Angular. Additionally, showcasing a variety of projects (not GitHub projects) can demonstrate
your versatility and ability to tackle different types of challenges. Highlight projects that have

made a significant impact or received recognition, as these can add credibility to your profile.

Documentation

Comprehensive documentation is key to making your projects accessible and understandable to
others. Start with a well-written README file for each project.

\/‘n’l If you need help creating a repository or writing a README, revisit Chapter 3, Repos-

itory Creation and Management.

A good README should include an introduction that explains the project’s purpose, installation
instructions, usage examples, and contribution guidelines. Use a consistent structure for all your
README files to make them easy to navigate. Beyond the README, consider using wikis and
project boards to provide additional context and organization. Wikis can be used to document
more detailed aspects of your project, while project boards can help visualize the project’s prog-

ress and workflow.

Contribution guidelines

Highlighting your contributions to open source projects can significantly enhance your GitHub
profile. Open source contributions demonstrate your ability to collaborate with others and con-
tribute to the broader tech community. When showcasing these contributions, focus on mean-
ingful interactions such as pull requests, issue tracking, and code reviews. Write clear and concise
commit messages that explain the changes you made and why they were necessary. This not only

shows your technical skills but also your ability to communicate effectively with other developers.

Chapter 10 245

Visuals and media

Adding visuals and media to your projects can make them more engaging and easier to understand.
Use high-quality screenshots and GIFs to highlight key features and functionalities of your projects.
Visuals can provide a quick overview of what your project does and how it works, which can be
particularly useful for complex projects. Additionally, consider creating video demonstrations that
walk viewers through your project. Videos can be a powerful way to exhibit your work, as they

allow you to explain your thought process and highlight specific aspects of your project in detail.

By carefully selecting and documenting your projects, highlighting your contributions, and using
visuals and media effectively, you can create a compelling GitHub portfolio that showcases your
skills and experience. This will not only make your profile more attractive to potential employers

and collaborators but also help you stand out in the competitive tech industry.

Advanced profile setup

Did you know that in addition to setting your basic profile details, you can create a more com-
prehensive profile of yourself using a profile README .md file? Using a profile README . md file helps
you to share more information about yourself with the community. As the file extension implies,
you write your information in markdown syntax, giving you the flexibility to use rich text and

add multimedia and hyperlinks to your other portfolios of work.

By default, GitHub automatically displays the contents of your profile README . md directly on your

profile page. All you have to do is ensure you carry out and meet the following pre-requisites:

e Arepository with a name that exactly matches your GitHub handle (username)
e Setthe repository’s visibility to Public

e AddtheREADME . md file to the root of this repo with the contents you desire for your profile

4

N @/ Certification tip
N

You may be asked to select from alist of options where a profile README . md is stored.

So, what kind of information can you add to your profile README .md? You can include sections
such as a summary of your bio to describe your work, your social media profile and blog links,

your mostimportant work or contributions, and how developers can best reach you to collaborate.

246

Building and Showcasing Your GitHub Presence

Important

\@/ This advanced profile README setup only works if you created this repo with the

same name as your handle after July 2020.

Badges

Badges are dynamic images that display real-time information about your project. They’re of-

ten used to show build status, test coverage, license type, version, and more. Let’s look at some

common types of badges.

Badge Type

Purpose

Build Status

Shows if the latest build is passing or failing (e.g., GitHub Actions, Travis
CI)

Test Coverage

Displays code coverage percentage (e.g., Codecov, Coveralls)

License

Indicates the type of license (e.g., MIT, GPL)

Version

Shows the current version of the project

Last Commit

Displays the date of the last commit

Open Issues/PRs Shows the number of open issues or pull requests

Downloads Indicates how many times the project has been downloaded (e.g., via
npm, PyPI)

Dependencies Shows if dependencies are up to date (e.g., David, Snyk)

Social Stars, forks, watchers, or GitHub followers

Table 10.1: List of common badge types and their purposes

How can you add badges to your profile? You can do this in three easy steps:

1. Find a Badge Provider:

e Shields.io — the most popular and customizable badge generator

e CI/CD tools such as GitHub Actions, Travis CI, and CircleCI often provide their

own badges

e Coverage tools such as Codecov or Coveralls

2. Copy the Markdown or HTML: Shields.io provides both Markdown and HTML snippets,

for example.

Chapter 10 247

3. Paste into Your README: Place badges at the top of your README . md for maximum vis-
ibility

Figure 10.4: Sample build badge showing the status of your build pipeline

Stars

GitHub stars are a way for users to show appreciation for a repository they find useful, interesting,
or well-made. Think of them as similar to “likes” on social media. A high star count signals to
others that your project is valuable or popular, which can attract more users and contributors.
Starred repositories are more likely to appear in GitHub search results and trending lists, increasing
exposure. When potential employers, collaborators, or clients view your GitHub profile, starred
projects can demonstrate your skills and impact. Stars can also help you gauge interest in your

project and prioritize features or improvements based on user feedback.

QQ Sponsor Q Notifications ? Fork 40.4k 'ﬂ? Star 420k

Actions EE] Projects 3 @ Security 5 [~ Insights

Figure 10.5: Stars on your repos is also an indicator of its popularity

Utilizing GitHub Pages for personal branding

GitHub Pages is a powerful tool that allows you to create a personal website directly from a GitHub
repository. This section will guide you through setting up GitHub Pages, creating content that

exhibits your skills and projects, and optimizing your site for personal branding.

Setting up GitHub Pages

Creating a GitHub Pages site is a straightforward process that begins with setting up a repository.
Start by creating a new repository named <username>.github.io, where <username> is your
GitHub username. This repository will serve as the source for your GitHub Pages site. Once the
repository is created, you can choose a theme from the GitHub Pages theme chooser or custom-
ize your own. Selecting a theme that aligns with your personal brand is important, as it sets the
tone for your site. Customize the theme to reflect your style and preferences, ensuring it is both

visually appealing and professional.

248 Building and Showcasing Your GitHub Presence

Content creation

The content you create for your GitHub Pages site should highlight your skills, projects, and expe-
riences. Start by building a portfolio section that highlights your key projects. Each project should

include a brief description, key features, and links to the repository and live demo if available.
Use high-quality images and media to make your portfolio visually engaging. In addition to your
portfolio, consider adding a blog section where you can share your knowledge and experiences.
Writing blog posts on topics related to your field can demonstrate your expertise and keep your
site updated with fresh content. This not only enhances your personal brand but also provides

value to your audience.

SEO and analytics

Optimizing your GitHub Pages site for search engines is crucial for increasing its visibility. Use
relevant keywords throughout your site, especially in titles, headings, and meta descriptions.
This helps search engines understand the content of your site and rank it higher in search results.
Additionally, setting up analytics is essential for tracking the performance of your site. Tools such
as Google Analytics can provide insights into visitor behavior, helping you understand which
content is most engaging and where improvements can be made. For more practical steps in
integrating Google Analytics, visit Use Analytics with your site (https://support.google.com/
sites/answer/97459). Regularly review your analytics data to make informed decisions about

your site’s content and structure.

Continuous improvement

Maintaining and improving your GitHub Pages site is an ongoing process. Regularly update your
site with new projects, blog posts, and other content to keep it fresh and relevant. Seek feedback
from peers and mentors to identify areas for improvement. This feedback can provide valuable
insights into how others perceive your site and what changes could enhance its effectiveness.
Additionally, stay informed about new features and best practices for GitHub Pages to ensure

your site remains up to date with the latest trends and technologies.

By effectively utilizing GitHub Pages, you can create a personal website that showcases your skills
and projects, enhances your personal brand, and helps you stand out in the tech industry. This
notonly provides a platform for sharing your work but also demonstrates your ability to leverage

modern tools and technologies for personal and professional growth.

Let’s put this into practice in a lab exercise through step-by-step instructions on how to create a

GitHub Page to promote your profile and skills.

https://support.google.com/sites/answer/97459
https://support.google.com/sites/answer/97459

Chapter 10 249

Lab 10.1: Creating a GitHub page to showcase your
profile and skills

By the end of this exercise, you will have created a personal GitHub Pages site to promote your

profile, projects, and skills.

Step 1: Create a new repository
1. Login to GitHub: Go to GitHub and log in to your account.

2. Create a repository:

Click on the + icon in the top-right corner and select New repository.

b. Name the repository <username>.github.io, where <username> is your GitHub

username.
Optionally, add a description.
d. Settherepository to Public.

e. Click Create repository. (Copy the HTTPS URL of the repo for use in Step 2.)

\/;/; You need a paid plan or a public repo to use GitHub Pages.

Step 2: Clone the repository

1. Open terminal or command prompt: Open your terminal (Mac/Linux) or command
prompt (Windows).

2. Clone the repository:

a. Run the following command to clone the repository to your local machine:

git clone https://github.com/<username>/<username>.github.

io.git

b. Replace <username> with your GitHub username.

250 Building and Showcasing Your GitHub Presence

Step 3: Create your website

1. Navigate to the repository:

a. Change directory to your repository:

cd <username>.github.io

2. Create an index file:

a. Create an index.html file:

touch index.html

b. Openindex.htmlinyour preferred text editor and add the following basic HTML

structure:

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1.0">
<title>My GitHub Page</title>
</head>
<body>
<hl>Welcome to My GitHub Page</hl>
<p>This is my personal website where I highlight my
projects and skills.</p>
</body>
</html>

Step 4: Customize your site (optional)

1. Add content:

a. Customize the index.html file to include sections such as About Me, Projects,

and Contact.

b. Use Markdown or HTML to format your content.
2. Add styles:

a. Createastyles.css file to add custom styles to your site.

Chapter 10 251

b. Link the CSS file in your index. html:

<link rel="stylesheet" href="styles.css">

Step 5: Commit and push changes
1. Add changes:

a. Stage your changes:
2. Commit changes:

a. Commit your changes with a message:

git commit -m "Initial commit"

3. Push changes:

a. Push your changes to GitHub:

git push origin main

Step 6: Enable GitHub Pages

1. Go to Repository Settings:

a. Navigate to your repository on GitHub.

b. Click on Settings.
2. Enable GitHub Pages:

a. Select Pages from the left navigation.
b. Under Source, select Deploy from a branch.
c. Under Branch, select the branch you wish to deploy from (usually main or master).

d. Click Save.
Step 7: View your site
1. Access your site:

a. Your site should now be live at https://<username>.github.io.

b. Open this URL in your web browser to view your site.

252 Building and Showcasing Your GitHub Presence

Step 8: Continuous improvement
1. Update regularly:

a. Regularly update your site with new projects, blog posts, and other content.
2. Seekfeedback:
a. Askpeers and mentors for feedback to continuously improve your site.

Congratulations! You have successfully created a GitHub Pages site, a straightforward way to
promote yourself online. Keep refining and updating your site to reflect your latest work and

achievements.

Let’s summarize what we learned in this chapter.

Summary

In this chapter, we explored how to build and promote our GitHub presence to enhance our ca-
reers in the tech industry. We learned the importance of crafting a professional GitHub profile,
starting with the basics, such as choosing a professional username, display name, and profile
picture. We also emphasized the significance of including contact information and utilizing

pinned repositories to highlight our best work.

We delved into the activity overview, understanding how a consistent and active contribution
graph can demonstrate our commitment to coding and open source projects. By focusing on

meaningful contributions, we aimed to keep our activity feed updated and relevant.

Next, we discussed how to effectively exhibit our projects and contributions. We learned to select
projects that align with our career goals, document them comprehensively, and highlight our
contributions in a way that stands out. We also explored the use of visuals and media to make our
projects more engaging. Metrics such as GitHub stars, forks, or contributor counts can reinforce

a project’s credibility.

Additionally, we covered advanced profile setup using a profile README .md file to share more
information about ourselves with the community. We also learned how to utilize GitHub Pages
to create a personal website that displays our skills and projects, enhances our personal brand,

and helps us stand out in the tech industry.

Finally, we put our knowledge into practice through a lab exercise, creating a GitHub Pages site
as an example way to promote one’s profile online. By the end of this chapter, we had the tools

and knowledge to optimize our GitHub presence and advance our careers in the tech industry.

Chapter 10 253

That’s it for now about showcasing your presence. In the next chapter, we will discuss in detail

how you might contribute to open source projects. Read along with me.

Test your knowledge

1. Whatis a prerequisite for setting up a profile README . md file on GitHub?

a. Therepository must be private.
b. The repository name must match your GitHub handle (username).
c. Therepository must contain at least three projects.

d. Therepository must be created before July 2020.

2. Which of the following is not a recommended section to include in your profile README.
md file?

a. Asummary of your bio.
b. Your social media profile and blog links.
c. Your favorite recipes.

d. Your mostimportant work or contributions.
3. Whatis the first step in creating a GitHub Pages site?

a. Selecting a theme from the GitHub Pages theme chooser.
b. Creating a new repository named <username>.github.io.
c. Writing a blog post.

d. Adding a README.md file to the repository.

Useful links

e Examples of awesome GitHub profiles: https://github.com/coderjojo/creative-
profile-readme

e Setting up your profile: https://docs.github.com/en/get-started/start-your-
journey/setting-up-your-profile

e What is GitHub Pages: https://docs.github.com/en/pages/getting-started-with-
github-pages/what-is-github-pages

e Use Analytics with your site: https://support.google.com/sites/answer/97459

https://github.com/coderjojo/creative-profile-readme
https://github.com/coderjojo/creative-profile-readme
https://docs.github.com/en/get-started/start-your-journey/setting-up-your-profile
https://docs.github.com/en/get-started/start-your-journey/setting-up-your-profile
https://docs.github.com/en/pages/getting-started-with-github-pages/what-is-github-pages
https://docs.github.com/en/pages/getting-started-with-github-pages/what-is-github-pages
https://support.google.com/sites/answer/97459

254 Building and Showcasing Your GitHub Presence

=

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://packtpub.com/unlock

11

Contributing to Open Source
Projects

In this chapter, you’ll learn how to navigate the open source landscape, identify projects that align
with your interests and skills, and understand the significance of open source licensing. By the
end of this chapter, you’ll be equipped with the knowledge and confidence to make meaningful

contributions to open source projects, enhancing your skills and visibility in the tech community.
We will cover the following main topics:

e Navigating the open source landscape
e Lab11.1: Making your first contribution

e Understanding open source licensing

Technical requirements

This lab exercise in this chapter requires the following:

e A GitHub account
e Gitinstalled on your computer (Windows, Linux, or macOS)
e Acode editor or IDE of your choice

e Access to a terminal/command-line interface

256 Contributing to Open Source Projects

Exploring the world of open source

Diving into the open source ecosystem can be both thrilling and a bit daunting. With a vast array
of projects available, it’s important to know how to pinpoint those that align with your goals
and abilities. This chapter will walk you through the process of identifying and assessing open
source initiatives, helping you contribute in ways that are both impactful and fulfilling. You'll
discover how to leverage tools such as GitHub’s Explore page and refine your search by language
or technology stack. We’ll also touch on the value of community involvement and how to become

an engaged participant in open source circles, enriching both your experience and your career.

Introduction to open source

We dealtalittle bit with the open source conceptin Chapter 2, Navigating the GitHub Interface, but
we will go in-depth in this chapter. We will provide a comprehensive introduction to the concept
and discuss the significance of open source, as well as the personal and professional benefits of

contributing to open source projects.

What is open source and why does it matter?

Open source software is built on the principle of transparency and collaboration. Its source code
is publicly accessible, allowing anyone to use, modify, and share it. This openness encourages a
collaborative development model where contributors from around the world can improve soft-

ware by fixing bugs, adding features, and enhancing performance.

The open source model plays a crucial role in making technology more accessible. By removing
financial and licensing barriers, it empowers individuals and organizations of all sizes to leverage
powerful tools and platforms. This inclusivity fuels innovation and ensures that technological
progress is shared more broadly. Clearly, there is much to learn from open source projects, but

what are the benefits of contributing to them?

Why you should contribute

Getting involved in open source offers a wealth of advantages. For developers, it’s a hands-on way
to sharpen technical skills and gain experience with real-world codebases. It’s also a great way to

learn new tools and frameworks while receiving constructive feedback from seasoned contributors.

Beyond skill-building, your contributions can serve as a living portfolio. Hiring managers often
look favorably on candidates who actively participate in open source, as it reflects initiative,
teamwork, and a passion for learning. This visibility can open doors to new job opportunities

and collaborations.

Chapter 11 257

There’s also a strong social component. Open source communities are vibrant spaces where de-
velopers connect, share knowledge, and support one another. Being part of such a community

can be both motivating and rewarding.

Finally, your work can have a lasting impact. By contributing to widely used projects, you help
shape the tools and technologies that others rely on, making software more robust, inclusive,

and innovative.

Up next, we will talk about how best to find the right open source projects to contribute to.

How to discover the right projects

Here are anumber of ways to effectively find and evaluate open source projects on GitHub, setting

the stage for successful contributions.

Using GitHub's Explore feature

GitHub’s Explore feature is a powerful tool for discovering open source projects. By navigating to
the Explore page, you can browse trending repositories, curated collections, and recommended
projects based on your interests and activity. The Explore page also highlights popular topics
and showcases projects that are gaining traction within the community. This feature is especially

helpful for uncovering active, well-maintained repositories that align with your areas of interest.

Searching for projects by language, topic, or technology

To find open source projects that match your specific interests, you can use GitHub’s search
functionality to filter repositories by programming language, topic, or technology. For example,
if you’re proficient in Python, you can search for repositories tagged with Python to find projects
written in that language. Similarly, you can search for projects related to specific technologies
tagged accordingly. This targeted approach helps you quickly find projects where your contribu-

tions will be most relevant and appreciated.

Evaluating project activity and community engagement

Once you’ve identified potential projects, it’s important to evaluate their activity and community
engagement to ensure they are suitable for contribution. Start by examining the repository’s
commit history and recent activity. Active projects typically have frequent commits, open issues,
and ongoing discussions. Additionally, review the number of contributors and the responsiveness
of maintainers to pull requests and issues. A healthy open source project will have an engaged

community where contributors collaborate, provide feedback, and support each other.

258 Contributing to Open Source Projects

Criteria Project A Project B
Last commit 2 days ago 6 months ago
Number of maintainers 3 1
Contribution guide Yes No

Good first issue present Yes No

—> “Choose Project A— more active and beginner-friendly.”

By choosing projects with active and welcoming communities, you increase the likelihood of

having a positive and productive contribution experience.

Joining open source communities

Let’s talk about the importance of engaging with open source communities and providing prac-

tical steps to becoming active and valued members.

Engaging with project maintainers and contributors

Building relationships with project maintainers and other contributors is a key part of becoming
an active participantin any open source initiative. A good first step is to introduce yourself through
the project’s communication channels—this might be an issue thread, a discussion forum, or a
dedicated chat space. Let them know that you'’re interested in contributing and ask where your
help might be most valuable. Maintainers and seasoned contributors can often point you toward

beginner-friendly tasks or areas that need attention.

As you begin contributing, keep the lines of communication open. Share updates on your prog-
ress, ask for input when needed, and be open to suggestions. This kind of collaboration not only
accelerates your learning but also helps you build credibility and trust within the community.
Always aim to be courteous and constructive—open source communities thrive on respectful

and supportive interactions.

Participating in forums, chat rooms, and mailing lists

Most open source projects maintain active spaces for discussion and collaboration, such as fo-
rums, chat platforms, or mailing lists. These are great places to stay informed, ask questions, and

engage with others who share your interests.

Look for the project’s official communication platforms—these mightinclude Slack, Discord, Git-
ter, or Discourse forums. Once you’ve joined, don’t hesitate to participate. Whether you’re asking
for help, offering advice, or simply sharing your thoughts, your involvement helps strengthen
the community. Mailing lists can also be a valuable source of updates and a venue for deeper

conversations about the project’s direction and goals.

Chapter 11 259

By actively participating in these spaces, you'll gain a better understanding of the project’s cul-
ture and priorities. You'll also have the chance to connect with other contributors, expand your
professional network, and learn from a diverse group of developers. This kind of engagement can

make your open source journey more rewarding and impactful.

Lab 11.17: Forking a repository — a complete
contribution workflow

Embarking on your first contribution? This section will guide you through the essential steps to
get started, from setting up your development environment to understanding the contribution
workflow. You’'ll learn how to fork and clone repositories, create new branches for your changes,
and effectively communicate with project maintainers and contributors. By following these steps,
you’ll be well prepared to make meaningful contributions and become an active member of the

open source community.

Let’s do a quick lab exercise.

Setting up your environment
Let us begin by forking the repo.

Forking the repository

Forking creates a complete copy of the repository under your GitHub account, allowing you to

make changes without affecting the original repository.
Following are the steps to fork:

1. Navigate to the repository: Go to https://github.com/PacktPublishing/GitHub-

Foundations-Certification-Guide.

2. TFork the repository:

a. Clickthe Forkbutton (% rec 13~) inthe top-right corner of the repository
page.

b. Select your GitHub account as the destination.
Keep the default repository name or customize it if desired.

d. Ensure Copy the main branch only is checked (default).

e. Click Create fork.

https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide
https://github.com/PacktPublishing/GitHub-Foundations-Certification-Guide

260 Contributing to Open Source Projects

3. Verify your fork:

a. Youshould now see the repository under your account: https://github.com/YOUR _
USERNAME/GitHub-Foundations-Certification-Guide, where YOUR_USERNAME
is your GitHub handle.

b. Notice the forked from PacktPublishing/GitHub-Foundations-Certifica-
tion-Guide indicator below the repository name.

Cloning your fork
Cloning downloads your fork to your local machine for development.
Following are the steps to clone:

1. Getthe clone URL:

a. Onvyour fork’s GitHub page, click the green Code button.

b. Copy the HTTPS URL (e.g., https://github.com/YOUR_USERNAME/GitHub-
Foundations-Certification-Guide.git).

2. Choose your local directory:

a. Open your terminal.

b. Navigate to where you want to store the project:

cd ~/Documents/github-projects # or your preferred location

3. Clone the repository:

git clone https://github.com/YOUR_USERNAME/GitHub-Foundations-
Certification-Guide.git

cd GitHub-Foundations-Certification-Guide

4. Verify the clone:

You should see your fork as the origin remote.

Configuring the upstream remote

To keep your fork synchronized with the original repository, add it as an upstream remote:

git remote add upstream https://github.com/PacktPublishing/GitHub-
Foundations-Certification-Guide.git

git remote -v

Chapter 11 261

You

Un

@ Quick tip: Enhance your coding experience with the AI Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

e(a, b) { 1 2
{sum: a + b};

& The next-gen Packt Reader is included for free with the purchase of this book. Scan
the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

E5HE

should now see both origin (your fork) and upstream (the original repository).

derstanding the contribution flow

Now, let’s see how we contribute.

Understanding the workflow

The typical contribution workflow follows this pattern:

1.

N oo R woN

Sync: Keep your fork updated with the upstream repository.
Branch: Create a feature branch for your changes.

Develop: Make your changes and commit them.

Push: Push your branch to your fork.

Pull request: Submit your changes for review.

Iterate: Address feedback and make revisions.

Merge: Once approved, your changes are merged.

https://packtpub.com/unlock

262 Contributing to Open Source Projects

Keeping your fork updated
Before starting any new work, sync your fork:

Switch to main branch

git checkout main

Fetch upstream changes

git fetch upstream

Merge upstream changes

git merge upstream/main

Push updates to your fork

git push origin main

@ Quick tip: Enhance your coding experience with the AI Code Explainer and Quick
Copy features. Open this book in the next-gen Packt Reader. Click the Copy button

(1) to quickly copy code into your coding environment, or click the Explain button

(2) to get the Al assistant to explain a block of code to you.

e(a, b) { 1 2
{sum: a + b};

\l/

g

& The next-gen Packt Reader is included for free with the purchase of this book. Scan
the QR code OR go to packtpub.com/unlock, then use the search bar to find this

book by name. Double-check the edition shown to make sure you get the right one.

E5HE

https://packtpub.com/unlock

Chapter 11 263

Following is the branch-based workflow, which helps keep your development organized, isolated,
and easier to review - by creating focused feature branches instead of working directly on main:
e Never work directly on the main branch
e Create feature branches for all changes
e Usedescriptive branch names (e.g., add-contributor-name or fix-documentation-typo)

e Keep branches focused on a single feature or fix

Creating a new branch for your changes
For this exercise, we’ll add your name to the contributors list.
Following are the steps for creating and switching to a new branch:

Create and switch to a new branch
git checkout -b add-my-name-to-contributors

Verify you're on the new branch

git branch

The branch name should be descriptive and follow common conventions:

e Uselowercase letters and hyphens
e Bespecific about what the branch does

e Keep it concise but clear

Making and committing changes

Your task is to add your name to the contributors table.

Now, you’ll make your contribution by adding your name to the contributors table:
1. Open the contributors file:

a. Navigate to CONTRIBUTORS.md in your code editor.
b. If the file doesn’t exist, create it with the following content:

Contributors

Thank you to all the contributors who have helped make this project
better!

| Name | GitHub Username | Contribution Date |

| Ayo | @github | 2025-06-01 |

264 Contributing to Open Source Projects

2. Add your information: Add a new row to the table with your information:

| Your Name | @your-github-username | 2024-MM-DD |

(Replace the placeholders with your actual name, your GitHub handle, and the date of contri-
bution.)

3. Save your changes: Save the file in your editor.

Commit your changes

1. Check the status:

git status

You should see CONTRIBUTORS .md as modified or untracked.

2. Stage your changes:

git add CONTRIBUTORS.md

3. Commit your changes:

git commit -m "Add [Your Name] to contributors list

- Add contributor information to CONTRIBUTORS.md

- Include name, GitHub username, and contribution date"

Best practices for commits
e Use present tense (“Add feature” not “Added feature”)
e Keep the firstline under 50 characters
e Include ablank line before additional details

e Bedescriptive about what and why, not just what

Submitting a pull request

Now that the work is done, we need to submit our contribution with a pull request.

Pushing changes to your fork

Push your branch to your fork on GitHub:

git push origin add-my-name-to-contributors

Chapter 11 265

Then, verify your push, as follows:

1. Go to your fork on GitHub.
2. You should see a banner suggesting to create a pull request.

3. Your new branch should be visible in the branch dropdown.

Submitting your contribution
1. Navigate to your fork: Go to your fork on GitHub.

2. Create pull request:

a. Click Compare & pull request (if the banner appears).

b. Or, click Contribute | Open pull request.

3. Fill out the pull request details:
a. Title: Use a descriptive title (e.g., Add [Your Name] to contributors list).
b. Description: Explain your changes:

Description
Adding my name to the contributors list as part of Lab 11.1
exercise.

Changes Made
- Added my information to CONTRIBUTORS.md

- Included name, GitHub username, and contribution date

Testing
- Verified markdown formatting is correct

- Confirmed table structure is maintained

4. Review your changes: Check the Files changed tab to verify your modifications.

5. Submit: Click Create pull request.

Handling feedback and revisions

This section will help you understand how to handle feedback and revisions, ensuring your con-

tributions are successfully merged into open source projects.
After submitting your pull request, maintainers may do the following:

e Approve and merge your changes

266 Contributing to Open Source Projects

e Request modifications
e Ask questions or provide feedback

e Suggestimprovements
Following are some common types of feedback:

e Code style: Formatting, naming conventions, or structure
¢ Documentation: Clarity, completeness, or accuracy
¢ Functionality: Logic, edge cases, or performance

e Testing: Coverage, test cases, or validation

Receiving feedback from maintainers is a crucial part of the open source contribution process.
When maintainers review your pull request, they may suggest changes, ask questions, or provide
constructive criticism. It’s important to respond to this feedback promptly and professionally.
Acknowledge the feedback by thanking the maintainers for their time and insights. Address each
comment individually, providing explanations or clarifications where necessary. If you need more

information or have questions about the feedback, don’t hesitate to ask for further clarification.
So, when you receive feedback, do the following:

1. Readit carefully: Understand all comments and suggestions.
2. Ask questions: If something is unclear, ask for clarification.
3. Beresponsive: Acknowledge feedback and provide timelines for changes.

4. Stay professional: Keep discussions focused and constructive.
For example, you might respond with the following:

Thank you for the feedback! I've addressed the comments and made the necessary changes. Please let me

know if there’s anything else that needs to be adjusted.

This approach shows that you value the maintainers’ input and are committed to improving

your contribution.

Based on the feedback you received, make the necessary revisions and updates to your code.
This may involve fixing bugs, improving code quality, adding tests, or updating documentation.
Ensure that your changes align with the project’s guidelines and standards. After making the
revisions, commit the changes to your branch with a clear commit message that indicates the

updates made in response to the feedback.

Chapter 11 267

The steps for updating your pull request are as follows:

1. Switch to your branch:

git checkout add-my-name-to-contributors

2. Make the requested changes: Edit the files based on feedback.

3. Commit the changes:

git add .

git commit -m "Address review feedback

- Fix table formatting in CONTRIBUTORS.md
- Update date format to YYYY-MM-DD

- Add brief contribution description"

@ Quick tip: Enhance your coding experience with the AI Code Explainer
and Quick Copy features. Open this book in the next-gen Packt Reader. Click
the Copy button

(1) to quickly copy code into your coding environment, or click the Explain

button

(2) to get the Al assistant to explain a block of code to you.

(a, b) { 1 2
{ : a+ b};

& The next-gen Packt Reader is included for free with the purchase of this
book. Scan the QR code OR go to packtpub.com/unlock, then use the search
bar to find this book by name. Double-check the edition shown to make sure

you get the right one.

https://packtpub.com/unlock

268 Contributing to Open Source Projects

4. Push the updates:

git push origin add-my-name-to-contributors

5. Monitor and respond to updates:

a. Your pull request will automatically update with new commits.
b. Reviewers will be notified of changes.

c. Continue this process until approval.

Merging your contribution once approved

Once the maintainers are satisfied with your changes and approve your pull request, the final step
is to merge your contribution into the main codebase. In many projects, maintainers will handle

the merging process. However, in some cases, you may be asked to perform the merge yourself.
If you are responsible for merging, ensure that your branch is up to date with the main branch.
These are the final steps:

1. Approval: Wait for the maintainer’s approval.
2. Merge: The maintainer will merge your pull request
3. Cleanup: Delete your feature branch (optional but recommended):

Switch back to main

git checkout main

Delete local branch

git branch -d add-my-name-to-contributors

Delete remote branch (optional)

git push origin --delete add-my-name-to-contributors

4. Syncyour fork: Update your fork with the merged changes:

git fetch upstream

git merge upstream/main

git push origin main

Chapter 11 269

Best practices summary

Some tips for successful contributions:

e Start small: Begin with small, focused contributions

e Follow conventions: Adhere to the project’s coding and contribution standards
¢ Communicate clearly: Write good commit messages and PR descriptions

e Bepatient: Review processes take time; maintainers are often volunteers

e Stay engaged: Respond to feedback promptly and professionally

e Test thoroughly: Ensure your changes work as expected

e Document well: Update documentation for any new features
Some common pitfalls to avoid:

e Working directly on the main branch

e Making large, unfocused changes

e Ignoring project contribution guidelines
e Poor commit messages

e Nottesting changes locally

e Being unresponsive to feedback

Congratulations! Your contribution is now part of the project. Take a moment to celebrate your

achievement and thank the maintainers for their support throughout the process.
Perfect! We now know how to contribute to open source projects.
Following are some suggested next steps:

e Explore other open source projects to contribute to
e Practice with more complex contributions
e Learn about advanced Git workflows (rebasing, squashing, etc.)

e Participate in project discussions and community activities

How about licensing intellectual property, and navigating the limits of reusing someone else’s
work? It’s true some projects are open source, but there might be restrictions on which part of the
code you can use or how you are allowed to use it. Up next, we will discuss open source licensing.
Remember: Open source contribution is about more than just code—it’s about collaboration,

learning, and building something meaningful together with the community!

270 Contributing to Open Source Projects

Understanding open source licensing

Understanding open source licensing is crucial for anyone involved in open source projects. Li-
censing not only defines how software can be used, modified, and distributed but also protects
the rights of both the original authors and the users. This section will guide you through the
importance of licensing in open source projects, introduce you to some of the most common open

source licenses, and help you choose the right license for your contributions.

Introduction to open source licenses

Let’s do some intros. We will discuss the importance of licensing in open source projects and

introduce you to some of the most common open source licenses.

Importance of licensing in open source projects

Licensingis a fundamental aspect of open source projects, as it defines the terms under which the
software can be used, modified, and distributed. An open source license grants users the freedom
to use the software for any purpose, access the source code, make modifications, and share the
software with others. Without a proper license, the legal status of the software is unclear, which

can lead to potential legal issues and restrict the software’s use and distribution.

Licenses ensure that contributors and users understand their rights and obligations, fostering a
collaborative and transparent environment. They protect the intellectual property of the original
authors while promoting innovation and sharing within the community. By clearly outlining
the permissions and restrictions, licenses help maintain the integrity and sustainability of open

source projects.

Common open source licenses

There are several widely used open source licenses, each with its own set of terms and conditions.

Here are three of the most common licenses:

e MIT License: The MIT License is one of the most permissive open source licenses. It allows
users to do almost anything with the software, including using, copying, modifying, merg-
ing, publishing, distributing, and sublicensing it. The only requirement is that the origi-
nal copyright notice and permission notice must be included in all copies or substantial
portions of the software. This license is popular because it imposes minimal restrictions,

making it easy for developers to integrate MIT-licensed code into their projects.

Chapter 11 271

e GNU General Public License (GPL): The GPLis a copyleft license, which means that any
derivative work must also be distributed under the same license. This ensures that the
software and any modifications remain free and open. The GPL requires that the source
code be made available to users, and any changes or additions must be released under the
GPL. This license is ideal for projects that aim to ensure that all derivative works remain

open source and that users have the freedom to modify and share the software.

e ApacheLicense: The Apache License is a permissive license similar to the MIT License but
with additional provisions. It allows users to use, modify, and distribute the software, but
italsoincludes explicit terms regarding patent rights. The license grants users a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable patent license to use the
software. This helps protect users from patentlitigation. The Apache License also requires

that any modifications to the original code be documented, ensuring transparency and

traceability.
Certification tip
\ ! 7/
/@\ You may be asked to identify or compare open source licenses—focus on their key

differences, such as permissiveness and obligations.

Now that we know some of the most common open source licenses, let’s explore the implications

of each of them.

Choosing the right license for your contributions

This section will help you understand the implications of different licenses and how to apply a

license to your own projects.

Understanding the implications of different licenses

Choosing the right license for your contributions is crucial, as it determines how others can use,
modify, and distribute your work. Different licenses come with varying levels of permissions

and restrictions, and understanding these implications helps you make an informed decision:

e Permissive licenses (e.g., MIT, Apache): Permissive licenses, such as the MIT and Apache
licenses, allow users to freely use, modify, and distribute your code with minimal restric-
tions. These licenses are ideal if you want to maximize the adoption and integration of
your code into other projects. However, permissive licenses do not require derivative works
to be open source, meaning others can use your code in proprietary software without

sharing their modifications.

272

Contributing to Open Source Projects

Copyleft licenses (e.g., GPL): Copyleft licenses, such as the GNU GPL, require that any
derivative works be distributed under the same license. This ensures that the software
and any modifications remain free and open. If you want to ensure that your contributions
and any derived works stay open source, a copyleft license is a good choice. However, this
can limit the use of your code in proprietary projects, as companies may be reluctant to
comply with the copyleft requirements.

Weak copyleft licenses (e.g., LGPL): Weak copyleft licenses, such as the Lesser General
Public License (LGPL), strike a balance between permissive and copyleft licenses. They
allow your code to be used in proprietary software, provided that any modifications to
the LGPL-licensed components are shared under the same license. This can be a good
option if you want to encourage both open source and proprietary use while ensuring

that improvements to your code remain open.

Understanding these implications helps you align your licensing choice with your goals for your

contributions and the broader open source community.

How to apply a license to your own projects

Applying a license to your own projects is a straightforward process, but it’s important to do it

correctly to ensure your intentions are clear. Here are the steps to apply a license to your project:

1.

Choose alicense: Decide which license best fits your goals and the nature of your project.
Consider the implications of each license type and how you want others to use your work.
Add a license file: Create a file named LICENSE or LICENSE.txt in the root directory of
your project. This file should contain the full text of the license you have chosen. You can
find the text of common open source licenses on websites such as choosealicense.com or
the Open Source Initiative (OSI).

Include alicense header in your source files: It’s a good practice to include a short license
header at the top of each source file in your project. This header typically includes the
name of the license, the copyright holder, and the year. For example, for the MIT License,

you might include the following:

Chapter 11 273

MIT License
Copyright (c) [Year] [Your Name]

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:...

4. Update Your documentation: Mention the chosen license in your project’s README file or
other documentation. This ensures that users and contributors are aware of the licensing

terms from the outset.

By following these steps, you can clearly communicate the licensing terms of your project, ensuring

that others understand how they can use, modify, and distribute your work.

License compliance

Let’s talk about the importance of license compliance and the legal and ethical considerations

involved in contributing to open source projects.

Ensuring your contributions comply with the project’s license

When contributing to an open source project, it’s essential to ensure that your contributions
comply with the project’s license. This compliance helps maintain the legal integrity of the project

and protects both you and the project’s maintainers. Here are some steps to ensure compliance:

e Read and understand the license: Before contributing, thoroughly read and understand
the project’s license. Pay attention to any specific requirements or restrictions, such as
attribution, distribution terms, or modification guidelines. If you have any questions or

uncertainties, don’t hesitate to ask the maintainers for clarification.

e Follow contribution guidelines: Many projects have a CONTRIBUTING.md file that outlines
the contribution process and any specific requirements related to licensing. Follow these
guidelines closely to ensure your contributions align with the project’s expectations.

¢ Respect attribution requirements: Some licenses, such as the MIT License, require that
you include the original copyright notice and permission notice in any copies or substan-
tial portions of the software. Make sure to include these notices in your contributions

where applicable.

274

Contributing to Open Source Projects

Avoid infringing on third-party rights: Ensure that your contributions do not include
code, libraries, or other content that infringes on the intellectual property rights of third
parties. If you use third-party code, make sure it is compatible with the project’s license

and properly attributed.

Document your changes: Clearly document your changes and contributions, including
any modifications to existing code. This transparency helps maintainers understand the

scope of your contributions and ensures that the project’s licensing terms are upheld.

Understanding the legal and ethical considerations

Understanding the legal and ethical considerations of open source licensing is crucial for respon-

sible contribution. Here are some key points to consider:

Respect for original authors: Open source licenses are designed to protect the rights of
the original authors while promoting collaboration and sharing. Always respect the terms

set by the original authors and give proper credit for their work.

Ethical use of open source software: Use open source software ethically and in accordance
with the license terms. Avoid using open source code in ways that violate the license or
the intentions of the original authors. This includes respecting any restrictions on com-

mercial use, distribution, or modification.

Legal implications of license violations: Violating the terms of an open source license
can have legal consequences. License violations can lead to legal disputes, loss of rights
to use the software, and damage to your reputation within the open source community.
Always ensure that your contributions and use of open source software comply with the

relevant licenses.

Contributing back to the community: Open source is built on the principles of collab-
oration and reciprocity. When you benefit from using open source software, consider
contributing back to the community by sharing your improvements, reporting bugs, or

helping with documentation. This fosters a healthy and sustainable open source ecosystem.

By understanding and adhering to these legal and ethical considerations, you can contribute to

open source projects responsibly and help maintain the integrity and sustainability of the open

source community.

Case studies and examples

Here are some practical examples and best practices for maintaining compliance with open source

licenses.

Chapter 11 275

Real-world examples of licensing issues and resolutions

Understanding real-world examples of licensing issues can provide valuable insights into the

complexities and importance of open source licensing. Here are a few notable cases:

¢ The BusyBox case: BusyBox, a software suite providing Unix utilities, is licensed under the
GPL. In several instances, companies used BusyBox in their products without complying
with the GPL’s requirements to provide the source code. The BusyBox maintainers took
legal action, resulting in settlements where the companies agreed to comply with the GPL
and release the source code. This case highlights the importance of adhering to copyleft

licenses and the potential legal consequences of non-compliance.

e TheReactlicense controversy: In 2017, Facebook’s React library was initially licensed un-
der the BSD license with an additional patent grant. However, the patent grantincluded a
clause that many in the open source community found problematic, as it could potentially
revoke the license if the user engaged in patent litigation against Facebook. This led to
significant backlash, and several major projects, including WordPress, decided to move
away from React. In response, Facebook relicensed React under the MIT License, resolving
the controversy and addressing the community’s concerns. This example underscores the

importance of community feedback and the impact of licensing terms on project adoption.

¢ The MongoDB Server Side Public License (SSPL): MongoDB originally used the AGPL
license but switched to the SSPL to address concerns about cloud providers offering Mon-
goDB as a service without contributing back to the community. The SSPL requires that
anyone offering the software as a service must open source their entire service stack. This
change sparked debate within the open source community, and the SSPL has not been
approved by the OSI. This case illustrates the challenges and considerations involved in

choosing and modifying licenses to protect project interests.

Best practices for maintaining compliance

Maintaining compliance with open source licenses is essential for both contributors and users.

Here are some best practices to ensure compliance:

¢ Understand the license terms: Before using or contributing to an open source project,
thoroughly read and understand the license terms. Ensure you are aware of any specific
requirements, such as attribution, distribution, or modification guidelines.

e Keep documentation up to date: Maintain clear and accurate documentation for your
project, including the license file and any relevant notices. Ensure that contributors and

users can easily find and understand the licensing terms.

276 Contributing to Open Source Projects

e Respect attribution and notices: Always include the original copyright and license no-
tices in your contributions and distributions. This is especially important for permissive

licenses such as MIT and Apache, which require attribution.

e Conductregular license audits: Periodically review your project’s dependencies and con-
tributions to ensure compliance with all applicable licenses. Use tools such as FOSSA, Black

Duck, or OpenChain to automate license compliance checks and identify potential issues.

e Engage with the community: Stay informed about licensing trends and best practices by
engaging with the open source community. Participate in discussions, attend conferences,

and follow relevant blogs and forums to keep up to date with the latest developments.

e Seeklegal advice when necessary: If you encounter complex licensing issues or are un-
sure about compliance, seek legal advice from professionals with expertise in open source
licensing. This can help you navigate potential pitfalls and ensure your project remains

compliant.

By understanding the implications of different licenses and how to apply them to your projects,
you can ensure that your work is legally sound and aligned with the collaborative spirit of the
open source community. You will be able to follow these best practices and help maintain the legal

integrity of your open source projects and contribute responsibly to the open source community.

Great! We have reached the end of this chapter. Let’s summarize what we have learned.

Summary

In this chapter, we explored how to navigate the open source landscape and identify projects that
matched our interests and expertise. We learned strategies to discover opportunities aligned with
our goals and emphasized the importance of community engagement to enhance our contribu-

tions and professional growth.

Contributing to open source projects offered significant benefits, such as advancing technical
skills, building professional networks, and improving career prospects. These efforts not only
help us grow individually but also foster innovation and accessibility within the tech industry,

highlighting the value of collaboration and shared progress.

We also understood the importance of licensing in open source, which defines how software
can be used, modified, and distributed. By protecting the rights of creators and users, licensing
ensures transparency and sustainability. By the end of this chapter, we were equipped with the
knowledge and confidence to make meaningful contributions to open source projects, driving

both personal and community-wide progress.

Chapter 11 277

Test your knowledge

1. Whatis the primary benefit of contributing to open source projects?

a. Financial gain
b. Gaining practical experience and improving coding skills
c. Reducing workload

d. Avoiding collaboration

2. Which feature page on GitHub helps in discovering open source projects that align with

your interests and skills?

a. GitHub Pages
b. GitHub Actions
c. GitHub Explore
d. GitHub Issues

3. Whatis the first step in contributing to an open source project on GitHub?

a. Cloning the repository
b. Forking the repository
c. Creating a new branch

d. Submitting a pull request

Useful links

e Explore open source projects on GitHub: https://github.com/explore

e Trending projects on GitHub: https://github.com/trending

e GitHub Docs: Fork a repository: https://docs.github.com/en/get-started/quickstart/
fork-a-repo

e GitHandbook: https://guides.github.com/introduction/git-handbook

e How to Contribute to Open Source: https://opensource.guide/how-to-contribute

e First contributions guide: https://github.com/firstcontributions/first-

contributions

https://github.com/explore
https://github.com/trending
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://docs.github.com/en/get-started/quickstart/fork-a-repo
https://guides.github.com/introduction/git-handbook
https://opensource.guide/how-to-contribute
https://github.com/firstcontributions/first-contributions
https://github.com/firstcontributions/first-contributions

278 Contributing to Open Source Projects

=

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://packtpub.com/unlock

12

Enhancing Development with
GitHub Copilot

The advent of generative AI (GenAl) has revolutionized the way we approach software devel-
opment, bringing unprecedented efficiency and creativity to coding practices. GitHub Copilot, a
prime example of GenAl, leverages advanced machine learning models to assist developers by
suggesting code snippets and entire functions, thereby streamlining the coding process. This
chapter delves into the capabilities of GitHub Copilot, guiding you through its setup, usage, and

best practices to enhance your development workflow and elevate your coding experience.
We will cover the following main topics:
e Introduction to GitHub Copilot

e Setting up GitHub Copilot
e Using GitHub Copilot effectively

Technical requirements

You will need the following to follow this chapter:

e AGitHub individual account
e Access to a GitHub Copilot plan (you can start with a free plan to explore the limited
features first)

e A compatible IDE/editor (preferably VS Code):

e Visual Studio: Version 2022 17.8 or later (for Windows) is needed, with 17.10 or

later recommended for the unified extension

280 Enhancing Development with GitHub Copilot

e Visual Studio Code (VS Code): Requires the GitHub Copilot extension for Visual
Studio Code

e For JetBrains IDEs, Eclipse IDE, Xcode, Azure Data Studio, and Windows Ter-

minal: Specific version compatibility may apply; consult the respective docu-

mentation
e Hardware and network requirements:
¢ RAM: A minimum of 4 GB

e Astableinternet connection

What is GitHub Copilot?

GitHub Copilot is an integrated Al assistant that supports developers through code comple-
tion, conversational coding (Copilot Chat), autonomous coding agents, and smart code reviews.
It enhances productivity by understanding context, generating code, editing across files, and
integrating with external tools—all within your IDE, terminal, or the GitHub platform. Itis a
cutting-edge Al tool designed to assist software developers throughout the coding lifecycle. De-
veloped by GitHub in collaboration with OpenAl originally, Copilotintegrates directly into popular
development environments such as VS Code, Visual Studio, JetBrains IDEs, Xcode, Neovim, Eclipse,

and the command-line interface (CLI), offering real-time support and automation.

GitHub Copilot is available on your favorite platforms:

Sl (X | @ & | N A|S

Figure 12.1: GitHub Copilot is available in these IDEs and environments

Atits core, GitHub Copilot functions as an intelligent coding companion. It provides context-aware
code suggestions, generates entire functions or modules, and even assists with debugging and
documentation. Through its conversational interface (Copilot Chat), developers can interact with

the Al to ask questions, refine code, and receive explanations, all within their workflow.
Beyond simple code completion, GitHub Copilotincludes advanced features such as the following:

e Autonomous coding agents that can make multi-file edits and resolve GitHub issues
e Pullrequest summarization and code review suggestions to streamline collaboration

e Custom instructions and extensions that tailor the assistant to individual or organiza-

tional needs

Chapter 12 281

e Enterprise-grade controls, including policy management, audit logs, and content ex-

clusions

GitHub Copilot represents a significant shift in how software is developed, moving from manual
coding to a more collaborative, Al-augmented process. It empowers developers to focus on prob-

lem-solving and creativity while automating repetitive or boilerplate tasks.

Figure 12.2: The GitHub Copilot logo can be found in IDEs and on the GitHub platform

Historical context

The emergence of GitHub Copilot in 2021 marked a pivotal moment in the evolution of software
development. Prior to Copilot, code completion tools were largely limited to syntax-based sug-
gestions, intellisense, and static analysis. GitHub Copilotintroduced a new model of interaction—
leveraging large language models (LLMs) trained on billions of lines of public code to provide

context-aware, dynamic code generation.

This innovation was built on the foundation of OpenAl’s Codex model, itself a descendant of GPT-
3, and later evolved with more advanced models such as GPT-4. The tool was initially released in
preview and quickly gained traction among developers for its ability to reduce boilerplate coding

and accelerate prototyping.

GitHub Copilot should not be confused with other Copilot products owned by Mic-
rosoft, such as M365 Copilot. GitHub Copilot helps developers write and understand

\Q/\/ code within their development environments, while Microsoft 365 Copilot is an Al
productivity assistant that enhances tools such as Word, Excel, Edge, and Outlook
by generating content, analyzing data, and automating tasks across the Microsoft
365 suite.

Support for multiple LLMs

Initially starting with OpenAI's GPT models, GitHub Copilot now supports multiple LLMs to

choose from, including the following (as of the time of writing this book):
e OpenAl models:

e GPT-4.1
e GPT-40

282

Enhancing Development with GitHub Copilot

o3
03-mini

04-mini

e Anthropic models:

Claude Opus 4

Claude Sonnet 3.5

Claude Sonnet 3.7

Claude Sonnet 3.7 Thinking

Claude Sonnet 4

e Google models:

Gemini 2.5 Pro

Gemini 2.0 Flash

These models have varying strengths and suitability for different use cases. When do you use

which model?

Choosing the right Al model for your work

The following table highlights the available models and their recommended use cases as listed

by GitHub:
Model Task area Excels at (primary use case)
GPT-4.1 General-purpose coding and writing Fast, accurate code completions and
explanations
GPT-40 General-purpose coding and writing Fast completions and visual input
understanding
o3 Deep reasoning and debugging Multi-step problem solving and
architecture-level code analysis
03-mini Fast help with simple or repetitive Quick responses for code snippets,
tasks explanations, and prototyping
04-mini Fast help with simple or repetitive Fast, reliable answers to lightweight
tasks coding questions
Claude Deep reasoning and debugging Complex problem-solving challenges
Opus 4 and sophisticated reasoning

Chapter 12 283

Claude Fast help with simple or repetitive Quick responses for code, syntax, and

Sonnet 3.5 tasks documentation

Claude Deep reasoning and debugging Structured reasoning across large,

Sonnet 3.7 complex codebases

Claude Deep reasoning and debugging Performance and practicality, perfectly

Sonnet 4 balanced for coding workflows

Gemini 2.5 | Deep reasoning and debugging Complex code generation, debugging,

Pro and research workflows

Gemini 2.0 | Working with visuals (diagrams, Real-time responses and visual

Flash screenshots, etc.) reasoning for Ul and diagram-based
tasks

Table 12.1: Available LLMs on GitHub Copilot

The model you are able to use with Copilot depends on which IDE client you are using, which

Copilot feature you are interacting with, or which Copilot plan you’re subscribed to.

Let’s discuss the available plans.

Available Copilot plans

Let’s look at the latest subscription options for GitHub Copilot as of the time of writing this book.
Here are the individual plans, as shown in Figure 12.3:
e Copilot Free:

e Price: $0/month

e Who it’s for: Individual GitHub users who don’t have access through an organi-

zation or enterprise

. Features:

e Limited access to Copilot Chat and code completion
e Up to 50 premium requests per month

e Basicmodel access (e.g., GPT-4.1)
e Copilot Pro:

e Price: $10/month or $100/year

e Whoit’s for: Individual developers seeking full access

284 Enhancing Development with GitHub Copilot

. Features:

e Unlimited completions and chat interactions

e Access to premium models (e.g., GPT-4.1, Claude, and Gemini)
e 300 premium requests/month

e Includes Copilot coding agent and extensions

e Free for verified students, teachers, and open source maintainers
e Copilot Pro+:

e Price: $39/month or $390/year
e Whoit’s for: Power users needing maximum flexibility

e Features: Everything in Pro, plus the following:

e 1,500 premium requests/month
e Full access to all available models

e Ideal for advanced Al workflows and multi-file editing
Here are the plans for businesses, as shown in Figure 12.4:
e Copilot Business:

e Price: $19/user/month
e Whoit’s for: Teams using GitHub Free or Team plans

. Features:

e Centralized management and policy control
e 300 premium requests/user/month
e Access to Copilot coding agent, chat, and extensions

e Organization-wide customization and content exclusions
e Copilot Enterprise:

e Price: $39/user/month
e Whoit’s for: Enterprises using GitHub Enterprise Cloud

e Features: All Business features, plus the following:

e 1,000 premium requests/user/month
e Enterprise-grade security, audit logs, and knowledge bases

e SAML SSO authentication and advanced policy controls

Chapter 12 285

Certification tip

\ 7/

@

|
- You may be given scenarios where you are presented with a use case and asked to
select which Copilot plan will meet those needs. Spend some time understanding

how to describe the plans and the differences in what they offer.

For Individuals - For businesses

Pro |, Most poputar

Get started Try for 30 days free

Openin VS Code

Figure 12.3: Copilot plans available for individuals

For individuails

Business Enterprise (e

with &

Get started Gat started

Contact sales Contact sales

Figure 12.4: Copilot plans available for businesses

These subscription plans cater to different user needs, from individual developers to large enter-

prises, ensuring that everyone can benefit from GitHub Copilot’s Al-powered coding assistance.

286 Enhancing Development with GitHub Copilot

Changes to Copilot subscriptions

Disclaimer: These prices and titles are accurate at the time of writing this book and

\;’ may be subject to change.
B

Premium requests

Premium requests are used for advanced features such as Copilot Chat, agent mode,

code review, and extensions. Additional requests can be purchased at $0.04/request.

How does it work?

Copilot leverages a deep learning model trained on a vast dataset of public code repositories. As
you type, it analyzes the code and provides suggestions that are relevant to the current context.
These suggestions can range from simple code completions to more complex functions and al-
gorithms. Developers can accept, reject, or modify these suggestions, making Copilot a flexible

and adaptive tool.
Some benefits of using Copilot are as follows:

e Increased productivity: By providing instant code suggestions, Copilot helps developers
write code faster and reduces the time spent on repetitive tasks
¢ Improved code quality: Copilot’s suggestions are based on best practices and common

patterns, helping developers write cleaner and more efficient code

e Learning and skill development: Copilot can serve as a learning tool, offering insights

into new coding techniques and best practices

e Enhanced collaboration: By reducing the cognitive load on developers, Copilot allows

them to focus more on higher-level design and problem-solving tasks

GitHub Copilot is beyond just code completion and suggestions; you can also interact with it

through various integrations and interfaces. Let’s examine some of these other interfaces.

Copilot Chat

Copilot Chatis an extension of GitHub Copilot that provides conversational Al assistance directly
within your development environment. It allows developers to interact with the Al in a more
natural, dialogue-based manner, asking questions, seeking explanations, and getting real-time
help with coding tasks. This feature enhances the traditional code completion capabilities of

Copilot by offering a more interactive and intuitive way to receive assistance.

Chapter 12 287

What is its relationship with ChatGPT?

Copilot Chatis also a conversational bot, just like ChatGPT, which is developed by OpenAl. Both
tools leverage LLMs to understand and generate human-like text based on the input they receive.
While ChatGPT is a general-purpose conversational Al that can be used across various domains
and applications, GitHub Copilot Chat is specifically tailored for software development. It inte-
grates seamlessly with development environments, providing context-aware assistance that is

directly relevant to the code and tasks at hand.

ChatGPT -

S

Edit with Copilot

Agent Mode

Ask Copilot to edit your file

automatically use multiple requests to pick files it, What can I help Wlth?

run terminal commands, and iterate on e

by Al, so mistakes ar s
ew output carefully before use.

+ Attach

i or type # to attach context

= Add Files...

Agent ~ GPT 4o ~

our Privacy Policy.

Figure 12.5: GitHub Copilot Chat interface vs. ChatGPT interface
Copilot Chat can be used in three modes:

e Ask: Usethis mode to pose questions or request explanations about your code, frameworks,
or concepts without making changes to the code itself. For example, you can ask, “What
does this function do?” or “How can I improve the performance of this loop?” Copilot re-
sponds with explanations, best practices, or relevant examples, acting as an on-demand

coding assistant.

288

Enhancing Development with GitHub Copilot

Edit: In this mode, Copilot takes your instructions and makes direct changes to your code.
You can highlight a code block and say, “Refactor this to use async/await” or “Add error
handling here”, and Copilot will apply the edits in place. This is ideal for quick improve-

ments, bug fixes, or stylistic updates without writing the changes manually.

Agent mode: This mode allows Copilot to make autonomous edits locally. It analyzes
code, proposes changes, runs tests, and validates results across multiple files. You can
also extend the capabilities with Model Context Protocol (MCP) servers, which extend
the reach of Copilot to platforms and tools outside the IDE. For example, with a Figma
MCP server, Copilot can fetch mockup screens from your Ul designers and translate them

to a working app.

By combining the widely adopted conversational style of ChatGPT with the code-specific knowl-

edge of GitHub Copilot, Copilot Chat offers a powerful tool for developers to enhance their pro-

ductivity and coding experience..

Copilot CLI

The GitHub Copilot CLI is an extension of GitHub Copilot designed to assist developers directly

within the CLI. This tool provides a chat-like interface in the terminal, allowing developers to

ask for command suggestions and explanations, making it easier to navigate and utilize the

command line effectively.

Some key features of the Copilot CLI are as follows :

Command suggestions: Developers can use the gh copilot suggest command to get
suggestions for various command-line tasks. For example, if you’re unsure how to undo
the last commit, you can ask the Copilot CLI for a suggestion, and it will provide the

appropriate command.

Command explanations: With the gh copilot explain command, you can ask the
Copilot CLI to explain what a specific command does. This is particularly useful for un-

derstanding complex or unfamiliar commands.

Chapter 12 289

e Interactive sessions: The Copilot CLI can start interactive sessions to gather more infor-
mation about what you need, ensuring that the suggestions are tailored to your specific

requirements.

[@] ayodeji — gh-copilot « gh copilot suggest Create a new web app with Azur...

[ayodejiPAyodejis—MacBook-Pro ~ % gh copilot suggest "Create a new web app with A]
zure CLI"

Welcome to GitHub Copilot in the CLI!

on

? What kind of command can I help you with?
> generic shell command

Suggestion:

az webapp create —--resource-group myResourceGroup --plan myAppServicePlan --na
me
myUniqueAppName --runtime "NODE|14-1ts"

? Select an option [Use arrows to move, type to filter]
Copy command to clipboard
> Explain command
Execute command
Revise command
Rate response
Exit

Figure 12.6: The Copilot CLI

Getting started with the Copilot CLI

To use the GitHub Copilot CLI, you need to have an active GitHub Copilot subscription and the
GitHub CLI installed. Here are the basic steps to get started:

1. Install the GitHub CLI: Follow the installation instructions for the GitHub CLI from the
official GitHub repository.
2. Authenticate: Authenticate using the GitHub CLI OAuth app with the gh auth login

--web command.

290 Enhancing Development with GitHub Copilot

3. Install the Copilot CLI extension: Use the gh extension install github/gh-copilot

command to install the Copilot CLI extension.

4. Start using the Copilot CLI: Begin using the Copilot CLI with commands.
Here are some examples of ways to use it:

e Suggestacommand: gh copilot suggest "Create a new web app with Azure CLI"

e Explain a command: gh copilot explain "git 1fs migrate import --everything

--include=\"*.gz,*.png,*.jar\

By integrating the Copilot CLI into your workflow, you can enhance your productivity and gain
a deeper understanding of command-line operations, making it a valuable tool for both novice

and experienced developers.

Copilot within the github.com Ul

GitHub Copilot is not just limited to IDEs and the command line; it also integrates seamlessly
within the github.com user interface (UI), enhancing the overall development experience directly

on the platform.
Some key features of Copilot within github.com are as follows:

e Pullrequest assistance: Copilot can help you create and review pull requests by suggest-
ing descriptions, summarizing changes, and even generating code snippets to address
feedback. This streamlines the code review process and ensures that pull requests are

well documented and easy to understand.

e Issue management: When creating or managing issues, Copilot can suggest relevant tags,
titles, and descriptions based on the context of the repository and the issue content. This

helps in organizing and prioritizing tasks more effectively.

e Code suggestions in the browser: While browsing code on github.com, Copilot can pro-
vide inline code suggestions and completions, making it easier to understand and navi-
gate large codebases. This feature is particularly useful for quick edits and code reviews

directly in the browser.
e Documentation generation: Copilot can assist in generating documentation for your

code by suggesting comments, docstrings, and README content. This ensures that your

code is well documented and easier for others to understand and contribute to.

Chapter 12 291

e Chat: Chat s also available within the github.com U], just as you have it embedded in
your IDE. Starting a conversation with Chat on github.com is sometimes referred to as

the immersive mode.

1 search &~ + - @1 Q. 'il

New conversation oes Ll X

How can | help you?

@ Attach 7 Space GPT-41 ~ B

% Create issue [Files ~ 1% Pull requests ~ (@ lssues ~ P Git ~

Figure 12.7: Copilot Chat can be invoked within the GitHub.com Ul to get an immer-
sive experience

Getting started with Copilot on github.com

To start using GitHub Copilot within the github.com U, you need to have an active GitHub Copilot

subscription. Here are the basic steps:

1. Enable Copilot: Go to your GitHub settings and enable GitHub Copilot for your account.
You can do this by directly navigating to https://github.com/settings/copilot/
features.

2. Integrate with repositories: Ensure that Copilot is enabled for the repositories you want

to use it with. This can be done through the repository settings.

https://github.com/settings/copilot/features
https://github.com/settings/copilot/features

292 Enhancing Development with GitHub Copilot

3. Startusing Copilot: Begin using Copilot features while creating pull requests, managing

issues, and browsing code on github.com.

By integrating Copilot within the github.com Ul, developers can leverage Al-powered assistance
throughout the entire development lifecycle, from code writing and review to issue management

and documentation.

Copilot Spaces

GitHub Copilot Spaces provides contextual environments that enhance Copilot’s ability to gen-
erate relevant and accurate responses by providing it with curated, task-specific information.
Each space acts as a scoped container where users can aggregate content relevant to a particular

project or domain.
Supported content types include the following:

e Source code from repositories

e Pullrequests and issues

e Uploaded files (e.g., PDFs, images, and spreadsheets)
e Free-form notes and documentation

e Custom instructions for Copilot

By referencing only the materials within a space, Copilot delivers responses that are more precise
and context-aware. This is particularly useful for complex projects, onboarding workflows, and

support scenarios where domain-specific knowledge is essential.

Spaces can be created under personal or organizational accounts. Organizational spaces support

access controls, allowing for private or read-only sharing across teams.

Copilot Spaces is available to all GitHub Copilot users. Free-tier users are limited to 50 chat mes-

sages per month, while premium users benefit from expanded usage based on their plan.

In essence, Copilot Spaces transforms Copilot from a general-purpose assistant into a focused

collaborator, tailored to the specific needs of your development context.
Getting started with GitHub Copilot Spaces
To begin using Copilot Spaces, follow these steps:

1. Access Copilot Spaces: Navigate to github.com/copilot/spaces.

2. Create anew space: From the Copilot Chat interface, click on the Spaces tab. Select New

Space to initiate a workspace.

github.com/copilot/spaces

Chapter 12 293

3. Name and describe the space: Provide a clear name and optional description. This helps
define the scope and purpose of the space (e.g., Customer Onboarding Automation or
Q3 Support Playbooks).

4. Add contextual content: Populate the space with relevant materials:

e Link GitHub repositories or specific files
e Upload documents (PDFs, images, and spreadsheets)
e Add notes or Markdown files (these may be documentation files)

¢ Include custom instructions for Copilot (e.g., Always adhere to tailwind.css

styling)

5. Use the space in Chat: Once the space is active, Copilot will use its contents to inform
responses. You can ask questions, request code, or generate documentation—all within
the context of the space.

6. Share (optional): For organizational accounts, you can share the space with teammates.
Choose between private or read-only access.

7. Manage and iterate: Continuously refine the space by updating content as your project

evolves. This ensures that Copilot remains aligned with your current needs.

Copilot on GitHub Mobile

GitHub Copilot in the GitHub mobile app brings the power of Al-assisted coding to developers
on the go. With the integration of GitHub Copilot Chat, developers can ask coding questions, get
code suggestions, and gain insights into both public and private repositories directly from their
mobile devices. This feature supports all GitHub Copilot plans, making it accessible to a wide
range of users. This mobile integration aims to democratize access to coding assistance, making

it easier for developers to work efficiently from anywhere.

Copilot agents

We have saved the best till last! This is the most exciting innovation that has come so far. GitHub
Copilot agents are autonomous Al-powered tools designed to perform software development
tasks directly within your GitHub workflow. They extend Copilot’s capabilities beyond code
suggestions in the IDE, enabling it to act as a background contributor that can plan, write, test,

and submit code changes via pull requests.

There are two main types.

294 Enhancing Development with GitHub Copilot

Copilot coding agent

This agent works autonomously in a secure, GitHub Actions-powered environment. It can fix
bugs, implement features, improve test coverage, update documentation, or even address tech-
nical debt. You assign tasks by assigning GitHub issues to Copilot as an assignee. GitHub Copilot

then performs the following:

1. Creates abranch

2. Writes and commits code
3. Opens apull request
4.

Awaits your review and feedback

In terms of security and governance, Copilot only pushes to branches prefixed with copilot/.
It cannot merge pull requests or approve its own work. It operates in a sandboxed environment

with limited internet access, and only users with write access can assign tasks to it.

Copilot code review

Code review is a feature within GitHub Copilot that enhances the code review process by providing
Al-generated suggestions and insights directly within pull requests. It analyzes the changes made
in a pull request and offers contextual feedback, such as identifying potential bugs, suggesting
improvements, and highlighting areas that may benefit from refactoring. This helps reviewers
focus on higher-level design and logic decisions rather than getting bogged down in syntax or

style issues.

In addition to automated suggestions, Copilot code review can generate summaries of pull re-
quests, making it easier for team members to understand the scope and intent of the changes. This
is especially useful in large or fast-moving projects where manual review can be time-consuming.
By integrating seamlessly into GitHub workflows, Copilot code review streamlines collaboration,

improves code quality, and accelerates the development cycle.

In the next section, we’ll talk about how to set it up in your development environment.

Lab 12.1: Getting started with GitHub Copilot

GitHub Copilotis available free, albeit with some limitations or missing features that you can get
in the paid versions. To get started with GitHub Copilot Free, visithttps://github.com/settings/

copilot/features. Alternatively, you can go to Settings | Copilot | Features.

https://github.com/settings/copilot/features
https://github.com/settings/copilot/features

Chapter 12 295

You will find three tasks to help you get started:

o Install Copilot in your editor
e Chat with Copilot anywhere
e Start building with Copilot

GitHub Copilot Free
Getting started 0/3 complete =--

Install Copilot in your editor

Ask about coding problems and get code completions while you work.
#] Visual Studio Code ~
) Chat with Copilot anywhere

) Start building with Copilot

Figure 12.8: Getting started with GitHub Copilot; you can complete three tasks

Let’s start with the first task, installing Copilot in your editor.

Installing Copilot in your editor
We will start with installation and configuration. To start using GitHub Copilot, you need to
install and configure it within your development environment.

Here are the steps to get you started:

1. Systemrequirements: Ensure your system meets the minimum requirements for running
GitHub Copilot. This typically includes having a compatible operating system and the

latest version of your preferred IDE.

2. Installing Copilot in popular IDEs:
e Visual Studio Code:

Open Visual Studio Code.

b. Go to the Extensions view by clicking on the Extensions icon in the activity

bar on the side of the window;, or press Ctrl + Shift + X.

c. Search for GitHub Copilot and click Install.

296 Enhancing Development with GitHub Copilot

e JetBrains IDEs (e.g., Intelli] IDEA and PyCharm):
a. Open your JetBrains IDE.

b. Go to File | Settings | Plugins (or Preferences on macOS).

c. Searchfor GitHub Copilot and click Install.
3. Integrating Copilot with your development environment:

o Initial setup and configuration: After installation, you may need to sign in to your
GitHub account from within the IDE to activate Copilot:
a. Click on the Accounts icon (bottom-left corner).
b. Select Sign in with GitHub and follow the prompts.
c. Follow the on-screen instructions to complete the setup process.
e Customizing settings for optimal performance: Access the Copilot settings within
your IDE to customize its behavior. This will vary from IDE to IDE. You can also

adjust settings such as suggestion frequency, language preferences, and more to

suit your workflow.
Getting started with Copilot Chat in the IDE
Follow these steps:

1. Install the GitHub Copilot Chat extension (Some newer versions of VS Code come with GitHub
Copilot pre-instaled):

a. Inthe Extensions view, search for GitHub Copilot Chat.
b. Install the extension.
2. Open the Copilot Chat panel:

a. First, open an existing Git repository that you have cloned locally to your system.
b. Click the Copiloticon (&) in the top bar.
c. This opens the Copilot Chat panel.

3. Startchatting:

a. Type a question or prompt, such as the following:

. Explain this function
. Write a unit test for this code

. Refactor this into a class

Chapter 12 297

b. Copilotwill respond with suggestions or explanations based on the open file and

cursor context.

Autocompletion in the IDE

Once you have installed and configured GitHub Copilot, you can start using it to enhance your

coding experience. Here are some tips to get you started:

¢ Using the autocompletion feature: Using GitHub Copilot starts simply by beginning to
type your code as usual. Copilot will analyze the context and provide suggestions in real
time, showing ghost text to help you autocomplete the next lines of code you are about to

write. Use the Tab key to accept a suggestion, or continue typing to refine it.

This behavior is a feature of Copilot called autocompletion. There are several other ways
to interact with GitHub Copilot, but I have limited it to autocompletion for the scope of
this book. This is the behavior common to all IDEs, whereas some other features may be

absent depending on which IDE you use.

¢ Understanding and accepting suggestions: Copilot’s suggestions are based on the context
of your code. Review the suggestions carefully and accept those that fit your needs. You can

also modify the suggested code to better align with your coding style and requirements.

e Editing and refining Copilot-generated code: After accepting a suggestion, you can edit
and refine the code as needed. Use Copilot’s suggestions as a starting point and build

upon them to create more complex and customized solutions.

By following these steps, you can effectively set up and start using GitHub Copilot to enhance

your development workflow.

The next section will cover how to use Copilot effectively, including tips and best practices for

maximizing its potential.

Using GitHub Copilot effectively

To get the most out of GitHub Copilot, it’s important to customize its behavior to match your

coding preferences:

e Tailoring Copilot to your coding style: Access the Copilot settings within your IDE to
adjustits behavior. You can specify the types of suggestions you prefer and how frequently
they appear. Customize language preferences to ensure that Copilot provides suggestions
that are relevant to the programming languages you use most often. You can make use
of custom instructions and prompt files that can be stored in the repository to further

guide Copilot’s responses and tasks.

298 Enhancing Development with GitHub Copilot

e Managing and filtering suggestions: Use the settings to filter out suggestions that don’t
align with your coding standards or project requirements. You can also provide feedback

on suggestions to help improve Copilot’s accuracy and relevance over time.

Best practices and tips

To maximize the benefits of GitHub Copilot, consider the following best practices and tips:

e Maximizing productivity with Copilot: Use Copilot to handle repetitive coding tasks, such
as generating boilerplate code, so you can focus on more complex and creative aspects
of development. Leverage Copilot’s ability to suggest entire functions and algorithms to

speed up your workflow.

e Avoiding common pitfalls: Always review Copilot’s suggestions carefully to ensure they
meet your project’s requirements and coding standards. Be mindful of potential security
implications when accepting code suggestions, especially for sensitive or critical appli-
cations. Copilot’s suggestions are sometimes syntactically correct but logically flawed;

always double-check logic!

That’s it on GitHub Copilot. We barely scratched the surface, butit was important to discuss the

basics to pass the certification exam. Let’s summarize what we learned.

Summary

In this chapter, we explored how GitHub Copilot enhances modern software development by
integrating Al-powered assistance directly into our workflows. We learned that Copilot supports
developers through intelligent code completion, conversational coding via Copilot Chat, auton-
omous agents, and smart code reviews. We walked through how to install and configure Copilot
in popular IDEs such as Visual Studio Code, and how to use features such as autocompletion and
Copilot Chat to streamline our coding tasks. We also examined how Copilot integrates into the
GitHub.com UI, the command line, and even mobile devices, offering a consistent and powerful

experience across platforms.

We gained insight into the different subscription plans available—ranging from the Free tier to
Pro, Pro+, Business, and Enterprise—each offering varying levels of access to premium models
and features. Additionally, we explored Copilot Spaces, a contextual environment that enhances
Copilot’s relevance by scoping its responses to specific projects. By understanding how to tailor
Copilot to our coding style, manage suggestions, and integrate it into team workflows, we are
now equipped to use GitHub Copilot not just as a tool but as a collaborative partner in our de-

velopment journey.

Chapter 12

299

Quiz time! Yay!!

Test your knowledge

Focus your revision on Copilot’s IDE integration, CLI commands, and configuration steps. These

are most likely to appear in the GitHub Foundations exam:

1

2.

3.

Whatis the primary function of GitHub Copilot Chat, and how does it differ from ChatGPT?

a.

GitHub Copilot Chat provides code suggestions, while ChatGPT offers general
conversational Al assistance

GitHub Copilot Chatis tailored for software development, providing context-aware
assistance within development environments, whereas ChatGPT is a general-pur-

pose conversational Al

GitHub Copilot Chat is used for CLI assistance, while ChatGPT is used for code

completion

GitHub Copilot Chat is a standalone application, while ChatGPT is integrated
within GitHub Copilot

Which of the following is NOT a feature of GitHub Copilot within the GitHub.com UI?

a. Pullrequest assistance

b. Issue management and analysis

c. Code suggestions in the browser

d. Real-time collaboration with other developers
What is the key difference between GitHub Copilot Pro and GitHub Copilot Business
subscriptions?

a. GitHub Copilot Pro offers team collaboration tools, while GitHub Copilot Business

does not

GitHub Copilot Pro is available for individual users, while GitHub Copilot Business
is designed for organizations and enterprises
GitHub Copilot Pro includes enhanced security features, while GitHub Copilot

Business does not

GitHub Copilot Pro is free for all users, while GitHub Copilot Business requires a

subscription

300 Enhancing Development with GitHub Copilot

Useful links

e Whatis GitHub Copilot?: https://docs.github.com/en/copilot/about-github-copilot/
what-is-github-copilot

e GitHub Copilot blog: https://github.blog/ai-and-ml/github-copilot/

e Copilot Chat Cookbook: https://docs.github.com/en/copilot/copilot-chat-cookbook

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://docs.github.com/en/copilot/about-github-copilot/what-is-github-copilot
https://docs.github.com/en/copilot/about-github-copilot/what-is-github-copilot
https://github.blog/ai-and-ml/github-copilot/
https://docs.github.com/en/copilot/copilot-chat-cookbook
https://packtpub.com/unlock

13

Funding Your Projects with
GitHub Sponsors

Securing financial support can make it easier to maintain and grow your open source projects,
especially when you're contributing regularly or managing popular repositories. GitHub Sponsors
offers a unique platform that enables developers to receive funding directly from the community
that benefits from their work. This chapter will guide you through the essentials of setting up
and managing sponsorship for your projects. From creating an appealing sponsorship profile to
engaging with your sponsors effectively, you’ll learn how to leverage GitHub Sponsors to not only

sustain your projects but also build meaningful relationships with your supporters.
We will cover the following main topics:

e Introduction to GitHub Sponsors
e Setting up sponsorship for your projects

e Engaging with your sponsors

Introduction to GitHub Sponsors

The GitHub Sponsors feature allows developers and maintainers to receive financial backing
directly from individuals and organizations who benefit from their work. By providing a platform
for sponsorship, GitHub enables creators to focus more on their projects without the constant

worry of funding.

302 Funding Your Projects with GitHub Sponsors

Sponsors can contribute on a recurring basis or make one-time donations, offering flexibility and
ongoing support. This financial assistance can be used for various purposes, such as covering
development costs, funding new features, or even supporting the developer’s livelihood. What
are the benefits?

Benefits of using GitHub Sponsors

The benefits of GitHub Sponsors extend beyond just financial support. Here are some key ad-

vantages:

e Sustainability: Regular sponsorships provide a steady stream of income, allowing devel-

opers to plan and execute long-term projects

e Recognition: Being sponsored is a form of recognition and validation from the community,

highlighting the importance and impact of your work

e Community engagement: Sponsors often become more engaged with the projects they

support, leading to a more active and involved community

e Motivation: Financial backing can boost morale and motivation, encouraging developers

to continue their contributions to the open source world

Certification tip

\ 7/

|
/@ You might be asked to choose from a list of options what GitHub Sponsors offer, its

benefits, or who is eligible to be sponsored.

There are some eligibility criteria to consider.

Eligibility and requirements
To become a sponsored developer on GitHub, there are certain eligibility criteria and requirements

that need to be met:

e GitHub account: You must have an active GitHub account.
e Open source contributions: Your projects should be open source and publicly accessible.

e Supported region: Your projects can be sponsored if you are in a location where GitHub
does business. GitHub Sponsors is available in a wide range of regions globally. For a list

of supported regions, visit https://docs.github.com/en/sponsors/getting-started-
with-github-sponsors/about-github-sponsors#supported-regions-for-github-

sponsors.

https://shorturl.at/Di5mb
https://shorturl.at/Di5mb
https://shorturl.at/Di5mb

Chapter 13 303

e Compliance with GitHub policies: You must adhere to GitHub’s community guidelines
and terms of service. Also, you must adhere to additional terms for GitHub Sponsors. You
can find more information here: https://docs.github.com/en/site-policy/github-

terms/github-sponsors-additional-terms

e Application process: Developers need to apply for the GitHub Sponsors program and

provide necessary details about their projects and contributions.

Once approved, you can set up your sponsorship profile and start receiving support from the

community.

Success stories

Many developers and projects have successfully leveraged GitHub Sponsors to achieve remarkable
milestones. For instance, the popular JavaScript library Lodash has received significant sponsor-
ship, enabling its maintainers to dedicate more time to its development and maintenance. Sim-
ilarly, the Homebrew package manager for macOS has benefited from community sponsorship,

ensuring its continued growth and improvement.

These success stories demonstrate the potential of GitHub Sponsors to transform the open source

landscape, providing developers with the resources they need to innovate and excel.

Y To find a developer to sponsor, visit https://github.com/sponsors/explore.
\/b; GitHub will even suggest developers to sponsor based on the dependencies in your

repos.

Say your application has been approved, what’s next? In the next section, we will discuss how

you may set up your GitHub Sponsors profile.

Setting up sponsorship for your projects
The first step to receiving financial support through GitHub Sponsors is to create an appealing
sponsorship profile. This profile serves as your public face on the platform, showcasing your

projects and explaining why they deserve support.

Certification tip

\, ! 4
/@\ This section covers navigating the settings and account linking — concepts that con-

nect to other GitHub Ul and profile customization questions.

https://docs.github.com/en/site-policy/github-terms/github-sponsors-additional-terms
https://docs.github.com/en/site-policy/github-terms/github-sponsors-additional-terms
https://github.com/sponsors/explore

304 Funding Your Projects with GitHub Sponsors

Here’s how to get started:

1. Accessing GitHub Sponsors: Navigate to the GitHub Sponsors section in your account
settings. If you're eligible, you’ll find an option to join the program.

2. Profile information: Fill out your profile with relevant information about yourself and
your projects. Highlight your contributions, goals, and the impact of your work.

3. Visual appeal: Use a professional profile pictures and banner image. Add graphics and
colorful elements. Visual elements can make your profile more attractive and engaging.
Read more about crafting a professional GitHub profile and showcasing projects and
contributions in Chapter 10, Building and Showcasing Your GitHub Presence.

4. Personal story: Share your journey as a developer. Personal stories resonate with potential

sponsors and can motivate them to support your work.

Become a sponsor to Homebrew

by

A

” Homebrew Sponsoras gy ayo-creator -
@ GitHub
=2 Hover over your avatar to review the
Homebrew is an open-source, free package manager for macOS, Linux and Windows "W badoe vou'll get that shows @Homebrew
10 (with the Windows 10 Subsystem for Linux). you're a sponsor.

Homebrew is a non-profit project run entirely by volunteers. We need your funds to
pay for software, hardware, hosting around continuous integration, maintainer Select a tier | Monthly I One-time
contributions, travel to conferences and future improvements to the project. Every .
donation will be spent on making Homebrew better for our users.
$15 a month Select

You'll receive any rewards listed in the $10
manthly tier. Additionally, a Public Sponsor
Current sponsors 757 achievement will be added to your profile.

oeaﬁcme@@agsew £
08200088 0T970S
0069990024092 225

Show more

$1amonth Select

You get a warm fuzzy feeling for supporting
the project.

@ED
@%
k2 1

$4 a month Select
Past sponsors 1,931

You get an even warmer fuzzy feeling for

090002 RLOPEDEE F0® omirim

Show more v
Figure 13.1: Sponsorship profile page of Homebrew

You can set up sponsorship for an individual account or your entire organization. In the case
of the latter, you will need to set up your organization profile. What are the main differences
between setting up sponsorship as an individual or for the entire organization? Let’s examine
this side by side.

Chapter 13 305

Feature Individual profile Organization account
. Solo developers and Teams, companies, and open source
Who can use it? . .
maintainers collectives
Sponsorship target The individual personally The organization as a whole
Payment destination Personal account Organization’s account
Tier management Personal tiers and benefits Organization-wide tiers and benefits
R Appears on personal Appears on the organization’s GitHub
Visibility .
GitHub profile page
Supporting personal . .
. .g Supporting collaborative or
Use case contributions to open .
company-managed projects
source
s Apply to GitHub Sponsors Apply to GitHub Sponsors as an
etu
P as an individual organization

Sponsorship buttons

The Sponsor button appears on a developer’s or organization’s GitHub profile or repository page.
It enables members of the community to contribute money to support you or your project. You
will typically find this on your profile page (next to the Follow button) or on the repository page,
if the repository owner has enabled sponsorship. When members click on the Sponsor button,
it will take them to the sponsorship page, displaying the sponsorship tiers (read about tiers in
the next section), each with different monthly contribution amounts and potential benefits. It
will also allow you to choose a one-time or recurring donation and then process the payment

through GitHub’s integrated system.
To enable the Sponsor button, you need to do the following:

e Join the GitHub Sponsors program

e Setupa .github/FUNDING.yml file in your repository to configure the button and link to

external funding platforms (such as Patreon, OpenCollective, Ko-fi, etc.)

There are sponsorship tiers you can create with attached benefits. Let’s look at these.

306 Funding Your Projects with GitHub Sponsors

Defining sponsorship tiers
Sponsorship tiers allow you to offer different levels of support with corresponding benefits. Here’s

how to set them up:

1. Tier creation: Decide on the number of tiers you want to offer. Common tiers include
Bronze, Silver, and Gold, but you can customize them to fit your needs.

2. Benefits and rewards: Define the benefits for each tier. These could include early access
to new features, exclusive content, or personalized thank-you notes.

3. Pricing: Set amonthly or one-time price for each tier. Ensure the pricing reflects the value

of the benefits offered.

4. Descriptions: Write clear and compelling descriptions for each tier. Explain what sponsors

will receive and how their support will make a difference.

Tier Price Benefit

Bronze $5/month Thank-you mention
Silver $15/month Early access to releases
Gold $50/month Feature request priority

Now that you have defined the various tiers, let us define the payment options next.

Setting up payment methods

To receive funds from your sponsors, you need to set up payment methods. GitHub Sponsors

supports various payment options:

e Paymentoptions: Choose from available payment methods such as bank transfers, PayPal,
or other supported services.

e Payout schedule: Understand the payout schedule and how often you’ll receive funds.
GitHub typically processes payouts on a monthly basis.

¢ Financial management: Keep track of your earnings and manage your finances effectively.

Consider using accounting software to streamline this process.

There might be tax implications for the money you receive through GitHub Sponsors,

L) varying based on your region or country. You will need to submit your tax informa-

4

tion during this setup.

Chapter 13 307

Promoting your sponsorship profile

Once your profile is set up, it’s time to promote it and attract sponsors. Here are some strategies:

GitHub community: Engage with the GitHub community by participating in discussions
(https://github.com/orgs/community/discussions), contributing to other projects,
and sharing your work.

Social media: Use platforms such as X/Twitter, LinkedIn, and Facebook to promote your
sponsorship profile. Share updates, achievements, and milestones to keep your audience
engaged.

Display a Sponsor button by using FUNDING.yml: Add a . github/FUNDING.yml file to
your repository to display a Sponsor button directly on your project page. This makes
it easy for visitors to find and support your GitHub Sponsors profile or through other

external funding platforms.

Blogging and content creation: Write blog posts, create videos, or host webinars about
your projects. Providing valuable content can attract potential sponsors.

Networking: Attend conferences, meetups, and other events to network with fellow devel-

opers and potential sponsors. Personal connections can lead to sponsorship opportunities.

A good engagement can build strong connections with sponsors and help improve your ability

to secure funding. In the next section, I'll speak briefly about engaging sponsors.

\

Certification tip

7/

/@ Understand how GitHub tracks contributions and repository activity. This knowledge

supports questions related to public engagement and profile visibility.

Engaging with your sponsors

Effective communication is essential for building and maintaining strong relationships with your

sponsors. Regular updates about your project’s progress, including new features, bug fixes, and

upcoming plans, keep sponsors informed and engaged. Here are some good practices.

https://github.com/orgs/community/discussions

308 Funding Your Projects with GitHub Sponsors

Transparency

Transparency about how sponsorship funds are being used builds trust and demonstrates that
their contributions are making a tangible difference. Personalized thank-you messages can further
strengthen your relationship by acknowledging their support on a personal level. Additionally,
encouraging sponsors to provide feedback and suggestions not only makes them feel valued but

also offers valuable insights for your projects.

Providing value to sponsors

Sponsors support your projects because they believe in your work, and providing additional value
can enhance their experience and encourage continued support. Offering exclusive content, such
as early access to new features, behind-the-scenes updates, or special tutorials, can make sponsors
feel appreciated. Depending on the sponsorship tier, you can provide perks such as merchandise,
personalized thank-you notes, or access to private repositories. Public recognition of your sponsors
in project documentation, release notes, or on social media not only shows appreciation but also

gives them visibility, further incentivizing their support.

Building long-term relationships

Long-term relationships with sponsors can provide sustained support for your projects. Con-
sistent engagement through regular communication and updates helps build a strong rapport.
Celebrating project milestones with your sponsors, whether through special updates, thank-you
messages, or small virtual events, can foster a sense of community and shared achievement. Host-
ing exclusive events, such as webinars, Q&A sessions, or live coding sessions, provides sponsors
with a unique experience and strengthens their connection to your project. Listening to your
sponsors’ feedback and adapting your approach based on their suggestions shows that you value

their input and are committed to continuous improvement.

Handling sponsorship challenges

While sponsorship can be incredibly beneficial, it may also come with challenges. Managing ex-
pectations by clearly communicating what sponsors can expect from their support helps avoid
misunderstandings. If conflicts arise, addressing them promptly and professionally through
open communication and a willingness to find a solution can resolve most issues. Balancing your
commitments to sponsors with your project goals is crucial; managing your time and resources

effectively ensures that you can meet both ends without compromising on either.

Let’s summarize what we discussed.

Chapter 13 309

Summary

Reflecting on our journey with GitHub Sponsors, we explored the transformative potential of
GitHub Sponsors for our open source projects. We delved into the essentials of setting up and
managing sponsorships, from creating an appealing profile to engaging effectively with our spon-
sors. By leveraging GitHub Sponsors, you are able to secure financial support, build meaningful
relationships with the GitHub community, and sustain your projects. Through GitHub Sponsors,
you can turn your passion for open source into a sustainable endeavor, ensuring the continued
growth and success of your project. Up next, we will look at GitHub Projects, a relatively new
feature on GitHub. We will cover a comprehensive guide on using GitHub Projects for effective
project management, covering topics such as setting up project boards, automating workflows,

and integrating with issues and milestones.

Test your knowledge

While some GitHub Sponsors functionality may not appear directly on the exam, questions about
profile setup, repo visibility, and collaboration tools are fair game. Review those as you answer

the following:
1. Whatis one of the primary goals of GitHub Sponsors?

To provide developers with free software tools

a
b. To create a sustainable ecosystem where open source projects can thrive

o

To offer developers a platform for social networking

d. To promote proprietary software development
2. Which of the following is NOT a benefit of using GitHub Sponsors?

a. Sustainability through regular sponsorships
b. Recognition and validation from the community
c. Guaranteed project success

d. Increased community engagement
3. Whatis a key requirement for becoming a sponsored developer on GitHub?

Having a private GitHub account

a
b. Contributing to proprietary software

o

Adhering to GitHub’s community guidelines and terms of service

&

Being located in a region where GitHub does not do business

310 Funding Your Projects with GitHub Sponsors

Useful links

e GitHub Sponsors: https://github.com/sponsors

e Supported regions for GitHub Sponsors: https://docs.github.com/en/sponsors/getting-
started-with-github-sponsors/about-github-sponsors#supported-regions-for-

github-sponsors

e Receiving sponsorships through GitHub Sponsors: https://docs.github.com/en/sponsors/

receiving-sponsorships-through-github-sponsors

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://github.com/sponsors
https://shorturl.at/dzBnk
https://shorturl.at/dzBnk
https://shorturl.at/dzBnk
https://docs.github.com/en/sponsors/receiving-sponsorships-through-github-sponsors
https://docs.github.com/en/sponsors/receiving-sponsorships-through-github-sponsors
https://packtpub.com/unlock

Part 4

Advanced GitHub and
Exam Preparation

This partis designed to equip you with advanced GitHub skills and prepare you for the Certification
exam. By the end of this section, you will have a deep understanding of project management with
GitHub Projects, security practices, and user management. Additionally, you will be well prepared

for the Certification exam after going through mock exams and effective study strategies.
This part of the book includes the following chapters:
e Chapter 14, Project Management with GitHub Projects

e Chapter 15, Security Practices and User Management

e Chapter 16, Mock Exams and Study Strategies

14

Project Management with
GitHub Projects

We dealt briefly with GitHub Projects in Chapter 7, Issues, Projects, Labels, and Milestones. In this
chapter, I will go into more detail in a few more areas that will help you prepare well for the certi-
fication exam. Getready to organize your tasks, track your progress, and automate your workflows
with more efficiency. Whether you’re managing a solo project or leading a team, GitHub Projects
will help you stay on top of your game. Bear in mind that we will be discussing Projects 2.0 solely
in this chapter. So, let’s get started by exploring how GitHub Projects can help you manage work

more efficiently for your certification exam.
We will cover the following main topics:

e Introduction to GitHub Projects
e Lab 14.1: Setting up project boards

e Automating project workflows

Technical requirements

To complete the lab in this chapter, you will need the following:

e A GitHub individual account

e A GitHub repository with at least one issue in it

314 Project Management with GitHub Projects

Introduction to GitHub projects

GitHub Projects is a versatile tool designed to enhance project management within the GitHub
ecosystem. It allows teams to organize their work visually, making it easier to track progress
and collaborate effectively. By providing a centralized space for managing tasks, GitHub Projects
helps streamline workflows, ensuring that all team members are aligned on project goals and
timelines. This integration with GitHub’s core functionalities, such as issues and pull requests,
means that developers can manage their code and project tasks in one place, reducing the friction

often associated with switching between different tools.

The significance of GitHub Projects extends beyond mere task management; it fosters a culture
of transparency and accountability within teams. By visualizing tasks and their statuses, team
members can quickly identify bottlenecks, prioritize work, and allocate resources more effective-
ly. This visibility not only enhances individual productivity but also promotes collaboration, as
team members can easily see what others are working on and how their contributions fitinto the
larger project. Overall, GitHub Projects empowers teams to work more efficiently and cohesively,

ultimately leading to better project outcomes.

Getting started with GitHub Projects

To kick off your journey with GitHub Projects, start by creating a new project within your repos-
itory. Navigate to the Projects tab, which you can find in the main menu of your repository. Click
on the New project button, and you’ll be prompted to choose a project template. Options such
as Kanban boards or basic tables are available, allowing you to select a layout that best suits your

workflow. After selecting a template, you can click on Create project.

Chapter 14 315

Projects | @ayo-creator's untitled project &
£ @ayo-creator's it) =
Create project ®
M view 1
Preject lamplates
= | Featimea

Start fram sexaten Ty reners
Table

Board

Roadmap

Team planning « GliHuk Feature releage - GitHub
Manage your team's prioeit

o work ems

Manage yeur b

les, and underst when planning for a feature release

Bug tracker - Gi
v of your profect and fimit Track and triage §

Figure 14.1: Creating a new project using a template

Creating and customizing board columns

When setting up your project board, you can create and customize columns to reflect your specific
workflow. For instance, you might start with basic columns such as To Do, In Progress, and Done,
butyou can also add more specific stages, such as Review or Testing, based on your team’s needs.
Customizing these columns allows you to tailor the board to your project’s requirements, ensuring
thatitaccurately represents the flow of work. You can easily rename columns, change their order,

or even add new ones as your project evolves, providing a dynamic and adaptable workspace.

Now, let us consider some vital features of a project.

316 Project Management with GitHub Projects

Project layout

GitHub Projects offers three main layouts to help teams visualize and manage their work effec-

tively: Board, Table, and Roadmap.

The board layout is designed for a Kanban-style approach, allowing users to organize tasks into

» «

customizable columns that represent different stages of progress, such as “To Do,” “In Progress,”
and “Done.” This layout is ideal for teams looking to track work visually and manage tasks dy-
namically. Itis commonly used by agile teams. You may, for example, add a “Backlog” column for
backlog grooming, or a “Awaiting Review” column to highlight tasks that are waiting on external
input before they can be picked up. This simple addition improves visibility and coordination

during standups or reviews.

& 4% OctoArcade Invaders e [e

[Plansing [Sprint Baard = [0 wigha [E Rosdmap | [My work B Feanires [#riarity [By persan [l Status Soard F By staus [By Spring [bone

= Filter by kayword o by field

Mot Started) 18 Estimate: 37 Planning # 13 Ostiniate: 109 Building _ 0 Estimate: a0 Review p= 5 Estimate: 17
(5 planning-sracking -dama £810 € (3) plansing-tracking-came #8723] I} laeing-tracking-emo #1160 (3 planning-iracking-desc #4822 -]
Bela go-no-go mestng Updates and bug fixes 1o engine from Beta Update gacumentation Herg e - Develapment

@ @ Fe e GHIED @D

= = AT o
Save score acrass levels {2} mlanring-tracking -demo #8524 | Updates o esllision lagic
Bata signup page A BAACREAE (3 plannirg-tracking-ceo #808
General bug fxes from Alpha feedback
(5 trninpachingdama 1724) aro J °
5
tarvbens With fividl outets () plaswing-tracking-censs ¥818 [=] s
() plansing-tracking-came #506 e Fres and paid lavels
[Tracking] Upseil | Growih experiance naed help (3 plannig-racking-demns #1158 2
Design new launch sereen
o [ecica RS io
Enabie for teams () plaewing-tracking-deme ¥831 @ 1i#ams (5
(Z) planring-tracking - cemo 818 [»] Documentation and Suppart
Account subscription design (Z) nlanreng-tracking-cemo #7913
(© ssoring srcking-coma #1161 ® fosstise)

Palished alien, beam, and cannca sprite files
Iweak difficulty

() planming-tracking -camo #5378 6 (5 planming iracking - demo #3821 3
= Acguire damain for aunch Updates ta aben, beam, bomb and cainan) planning-tracing-dsse #1101 &
{5 plarning-tracking-damo STET =] sprites -
[Tracking] Integrare payments systemn

Update README.md gy

(o™ king-gama K832 ' [baciicg X faature]

Final creative shots fram game
Lomh () pisswing-tracking-dems #802 -]
Prevent the Kenami cade fram bringing Updates 1a velozity of the ship and alisn
down ail of GitHu: (D) plarving-Sracking-damo K629 W mavements

o Add itam + pelt tam - hdd itam A it

Figure 14.2: Board layout

Chapter 14 317
2 Quick tip: Need to see a high-resolution version of this image? Open this book in
the next-gen Packt Reader or view it in the PDF/ePub copy.

& The next-gen Packt Reader and a free PDF/ePub copy of this book are included
with your purchase. Scan the QR code OR visit packtpub.com/unlock, then use
| the search bar to find this book by name. Double-check the edition shown to make
Q- sure you get the right one.
4 N

of

[

The table layout provides a high-density spreadsheet view, where users can see issues, pull re-

quests, and custom fields in a structured format. This layout is particularly useful for teams that

need to sort, filter, and group tasks based on various criteria. It’s also the best for bulk-editing

multiple items. Imagine if you need to update a new target date for all issues in the backlog, or

assign eight items to the same team member during sprint planning.

& @9 OctoArcade Invaders

oard [Apha

B rlanaing =
Title

* Squad1 &

[E] Roadmap

() [Tracking] Allow users to perform a manual resetting #1100

() Integrate with Commerce Service #3
() Haro sita - Development #8522

) iegrate with backend systems 2B02

73 Prevent the Konami code from bringing down all of GitHub

nvestigate latency

Add item

R sSquad2 @

() integrate with Leaderboard Service #2711
(3 [Tracking] Upsell | Growth experience #3806
(&) Account subscription design #8168

(5 Froe and pald levels #8168

B A Feawres B riority
Status Assigness
Dane € shiftkey
Dono B & rileybroughten
Aeviow pe Q azenttatt
Daone) @) keisancson
Mot Started)

WotStaned)

Bane §J @ dusave and jclam
Planning #1 £ mariorod

Planning #% @ szenviatt

Huilding £ JannesPeters

Figure 14.3: Table layout

a2 | B [+
B By person [stamus Baard [&y status & By sprint
Priority Labais
High guplicata annancement (0
High
g CIID €D D
gt @ D D
High ‘anhancemaent
Low

https://packtpub.com/unlock

318 Project Management with GitHub Projects

Lastly, the roadmap layout offers a timeline-style view, enabling teams to visualize their project

over time. This layout allows users to set start and target dates for tasks, making it easier to track
progress against deadlines and milestones.

& OctoArcade Invaders

e @ -
8 Planning 1 Sprint Board El roadmap = Fl Alpha B My wark B Foaturas B Pricrity B By parson D statis Board [8y status B &y Sprint [oona
Nevambar 2022 mbes 2022 B ouatioids @) Month = Todw € >
2 3] 3 [7 [] w n i S 15 8 v " W W 2 EER

fixes ta enging from Br 2823

#8524 (2 Beta signup page 7624

3 General bug fives from Alpha feedoack #808) General bug fixes from Alpha feedback waod
4 (O Beta go-no-ga mesting #E10 (& Beta go-no-go meeting 0510 §
& () Tweak to cifficulty level based on Alpha #8268 (2 Twaak 1o difficulty level based on Alpha feedback #a26 (5]

Add itam

@ Alpha Launch planning

Alpha ga-no-ge mesting #7399 G
) [Tracking]
12 @ [Tracking] At up page #1090 o0
Add tem
{= Pre-GA Launch planning-tracking-demo#1242

&} Documantation and Supgart #5831

W @ Apha go-no-po maeting #7995 & Alpha ge-no-ge meeting 4733 G
Figure 14.4: Roadmap layout

Each layout can be customized to fit the specific needs of the project, ensuring that teams can

work in the way that suits them best.

Certification tip

Expect a few questions on board layouts and when to use them effectively. Know

the different features of Board versus Table versus Roadmap.

Views

There is a variety of views that allow teams to tailor their project management experience to
their specific needs. Each view is displayed on a separate tab within the project, enabling users
to focus on different aspects of their work. For instance, you can create a view that filters for all
items not yet started, helping to identify tasks that need attention. Another useful view might
group tasks by team workload, allowing for better resource allocation and visibility into who is
handling what. Additionally, you can sort items by various criteria, such as due dates or priority
levels, to ensure that the most critical tasks are highlighted.

Chapter 14 319

These customizable views enhance collaboration and efficiency by allowing team members to
quickly access the information they need. Users can save their views for easy access later, making
it simple to return to specific filters or groupings as projects evolve. This flexibility not only helps
in managing ongoing tasks but also supports strategic planning by providing insights into project
timelines and team capacities. By leveraging these project views, teams can maintain clarity and

focus, ultimately driving better project outcomes.

Certification tip

\ 7/

g

€ slice by, and other view properties that help you customize and add flexibility. The

|
- Expect a few questions on managing views. Get familiar with terms such as group by,

lab in this chapter will help you learn more about view options.

Custom fields

Custom fields in GitHub Projects allow teams to enrich their project management experience by
adding specific metadata to issues, pull requests, and notes. You can create various types of custom
fields, such as text fields for notes, number fields for metrics, and date fields for deadlines. This
flexibility enables teams to capture essential information that goes beyond the default attributes,
such as assignees and labels. By tailoring these fields to your project’s needs, you can enhance

visibility and organization, making it easier to filter and sort tasks based on specific criteria.

Adding and editing items

Adding and editing items in GitHub Projects is straightforward. You can add issues, pull requests,
or draft issues individually or in bulk. To add an item, simply paste the URL of an existing issue
or pull request into the project board, or use the command palette for quick access. You can also
create new issues directly from the projectinterface, ensuring that all relevant tasks are captured
without navigating away from your project. Editing items is equally efficient; you can update
multiple items at once using bulk editing features, allowing for quick adjustments to assignees,

labels, or custom fields.

Archiving items

Archiving itemsis a useful feature for maintaining a clean project board while preserving context.
When you archive an item, it is removed from the active project view but remains accessible for
future reference. This is particularly helpful for managing the maximum item limits in a project,

which is capped at 1,200 active items and 10,000 archived items.

320 Project Management with GitHub Projects

Y Some improvements are coming to GitHub Projects, to eliminate item restrictions,
\/L’; thereby removing the cap on active items. This is currently in public preview as of

the time of writing this book. Refer to GitHub’s official roadmap for current limits.

You can manually archive items or set up automated workflows to archive items that meet specific
criteria, ensuring that your project board stays organized without losing important historical
data. This capability allows teams to focus on current tasks while keeping past items available

for review or restoration if needed.

There are some nuances, advanced features, and good practices to note if you want to get the

most out of GitHub Projects. Let’s discuss some of them.

Understanding project visibility (public versus private)

Animportant aspect of GitHub Projects is understanding project visibility. When creating a project,
you can choose between making it public or private. A public project is accessible to anyone on
GitHub, which is ideal for open source projects where collaboration and transparency are key. On
the other hand, a private project restricts access to only those you invite, making it suitable for
sensitive or proprietary work. This choice is crucial for managing who can view and contribute

to your project, ensuring that your team can work securely and efficiently.

Project scope (organization versus user)

Furthermore, a project can be created at either the organization level or at the individual (user)
level. The distinction between organization projects and user projects lies primarily in ownership,

access control, and collaboration scope. Here’s a breakdown of the key differences:

Organization User

Ownership GitHub organization GitHub individual user

Access control Managed via organization-level Only the owner has
permissions. You can assign roles such full control. Others can
as admin, write, or read to members or collaborate if the project
teams. is public, but with limited

permissions.

Collaboration Ideal for teams working across multiple More limited compared to
repositories. Members of the organization | organization projects. You
can collaborate easily. can’t assign roles or use teams.

Chapter 14 321

Visibility Can be public or private. Can be public or private.

Use case Best for managing work across a company, | Best for personal projects,
open source community, or any group solo developers, or small-
with multiple contributors. scale planning.

Table 14.1: Key differences between GitHub Organizations and Individual User Accounts

Integrating projects with issues and milestones

One of the strengths of GitHub Projects is its integration with issues and milestones. You can link
issues and pull requests to cards on your project board, making it easy to track the status of work
and ensure that everything is aligned with your project goals. Milestones can be used to group

related issues and track progress toward larger objectives.

For example, you can create a milestone for a major release and link all related issues and pull
requests to that milestone. This helps in tracking the progress of the release and ensuring that
all tasks are completed before the release date. You can also use labels to categorize issues and

pull requests, making it easier to filter and search for specific tasks.

Let’s test this out in a lab exercise!

Lab 14.1: Setting up project boards

By the end of this section, you’ll have a fully customized project board that helps you manage

your tasks and track progress efficiently.

Creating a project board

Ready to set up your board? Let’s get started!

1. Navigate to your repository: Open your GitHub repository where you want to create the
project board.

2. Accessthe Projects tab: Click on the Projects tab located at the top of the repository page.

3. Create a new project: Click the New project button.

4. Choose atemplate: In the Featured list, select a template that fits your needs. Let’s select

Kanban in this lab.

\/‘/' GitHub provides several templates to help you get started quickly. Choose a

template that matches your project type and customize it as needed.

322 Project Management with GitHub Projects

5. Name your project: Enter a name for your project (e.g., Feature Development).

6. Create project: Click the Create project button to finalize.

= O ayo-creator | Prejects | Feature Development &

3 Type o & + n e 'ﬁ'
& Feature Development Add st pdate e -

[Backiog = [Friarty board | Teamiterns [Aoadmap | [nmeiew | [sy tess + Mew view
= Filter by kayword or by fiald
) Backlag (8 Edtimate 0 O Ready & Enisanid O Inprogress 615 Eximate 0 O Inreview 05 Estimse 0 C Done o
This Htam hasn't been wiarted Thita |5 feady bo-be picked in This is actively Being wirked an Thes Ibam 15 i reviow This fias Dean
+ Additem + Add ibtem + Add item + Add ftem + Add item

Figure 14.5: Newly created project using a Kanban template

Customizing columns

Let’s customize the columns and see. First, we will delete the Ready column and then rename
another one:

1. Delete columns: Click the ellipses (...) next to the Ready column. This will show a drop-

down menu. Then, click Delete to delete the column.

O Ready 0 Estimate: 0 see

This is ready to be
Items

= Archive all

U Delete all

Column

33 Set limit

/ Edit details

& Hide from view

U Delete

+ Add item

Figure 14.6: Context menu of a Kanban column

Chapter 14 323

2. Rename columns: On the In review column, click on the ellipses to reveal the context
menu and click Edit details. Rename the column Awaiting approval. Optionally, you can

select a different color. Colors help to visually distinguish items and cards on the board.

3. Reorder columns: Drag and drop columns to reorder them according to your workflow.
You can do this by merely dragging the column name to the right or to the left of other

columns on the board.

Adding and managing cards
Once your project board is set up, you can start populating it with cards to track tasks and ideas

across columns.

1. Create new cards: Click the + Add item button at the bottom of a column to add new
cards. This should open a text box at the bottom. Type the title of the card in the box, say,
Improve usability of the login page. As you begin typing, a context menu appears

at the top. Select Create a draft or just press the Return key.

O Backlog 0/5 Estimate: 0 O Awaiting apprc

This item hasn't been started Estimate: O

This item is in review

") Create a draft o
(© Create new issue ®a

& Add item from repository

[+ Improve usability of the login page

Figure 14.7: Creating a card has three options

324 Project Management with GitHub Projects

You have now created a draft issue. Let’s add an existing issue and see.

2. Addissues and pull requests: Click the + Add item button at the bottom of the Backlog
column, and this time, click the + button to the left of the text box. Then, select Add item
from repository. This will open a dialog box of a form for selecting an existing issue. Select

one of the issues you have created in the past. Then, click the Add selected items button.

Add items to project o
i in
& my-blank-repe - Q1 Search for issues and pull requests
| Select all items
5] () [Request] Add Dark Mode Support to Application == #3

| = Add hello world python file hello_werld.py #2

| 13 Add hello world python file hello_world.py #1

Showing 3 most recent items that have not been added to this project. Use search to narrow down this list.

Figure 14.8: You can add existing issues to a project board

3. Move cards: Drag and drop cards between columns to update their status. When you drag
and drop an issue between columns, this change is captured in the timeline of thatissue.

You can see the timeline by just scrolling through the issue.

Feature Development & Q, Type[/]to search &

[Request] Add Dark Mode Support to Application = #3

ayo-creatarfmy-blank-repo

» Next steps include debugging the login function and testing the fix,

& Looking forward to resolving this soon!

@

4 ayo-creator moved this to Backlog in] Feature Development 1 minute ago

4 ayo-creator added this to [} Feature Development 1 minute ago

4 ayo-creator moved this from Backlog to Awaiting approval in [Feature Development 1 minute ago
hodenio g Badkiniul s Gl o ki S

Figure 14.9: The issue timeline captures project changes made to an issue

Chapter 14 325

Certification tip

Y 7/

/@\ You may be asked which types of items can be converted into cards, or how to asso-

ciate cards with issues across repos.

Modifying visible fields
You can customize which information appears on your project board by modifying the visible

fields in each view.

1. View options: Open up the view options of your current view by clicking on the chevron
icon ([~)) next to the name of the view (Backlog) and select Fields from the ensuing menu.

This will display all the available fields to choose from.

= O ayo-creator / Projects / Feature Development &

& Feature Development

[Backlog ~ [Priority board] Teamitems [Z] Roadmap B inre

T Layout
= Filter by keyw

5 Table i [Board | [Z] Roadmap

Backl 1 ing approval 1/5
O ck g Configuration g app! .
This item hasn't 3
= Fields: Title, Assignees, Stat... >))
o 5 in review
L./ Draft 00 Column by: Status >
Improve usabilit o
P = Group by: none il tRpo 3,
Add Dark Mode Support to
1 Sortby: =t Priority > pee
13 Field sum: Count, Estimate >
Slice by: none >

|~ Generate chart

Z Rename view
0 Duplicate view

Delete view

ch

Export view data

[«

+ Add item + Add item

Figure 14.10: You can customize the visible fields on a card

326 Project Management with GitHub Projects

2. Selectthefields you desire and click Save on the right-hand side of the project board (keep
this in mind whenever you make changes to your project’s views).

3. Spend some time studying these view options. Other activities you can carry out on the
Board layoutinclude selecting which field you want to use as the Kanban lanes, grouping

cards by a field, slicing by, and applying aggregates. For example, you can sort cards by
different criteria (e.g., due date or priority).

Filtering and sorting

To focus on specific tasks, you can filter and sort cards on your project board using various criteria

like labels, assignees, or milestones:

1. Filter cards: Use the filter bar at the top of the project board to filter cards by labels,
assignees, milestones, or other custom fields you may add. The filter you specify will be
interpreted as text in the filter box. Using multiple filters will behave like a logical AND.
You can separate filters by a space. If your filter criteria is a text that contains spaces, you

should enclose the text in double quotes (“).

& Feature Development

[Backlog ~* [Priority board B Team items [Z£] Roadmap imls

[= has:label | /
/

linked pull requests:

| tabet:

last updated:

@ my-blank-repo #3

[Request] Add Dark Mode Support
Application »

enhancement must-have (uifu

> Oneration Aceessibilitv 101

Figure 14.11: Filtering cards using the filter box

Chapter 14 327

This marks the end of our lab exercise. Spend some extra time tweaking your view and switching

to different layouts to discover the nuances and differences.

Up next, we will see how we can automate our project flows using rules.

Certification tip

N\ ! d
/@\ Expect questions that test your ability to organize project views using filters and

labels to manage large sets of issues.

Automating project workflows

GitHub Projects offers a range of built-in workflows that can help you automate repetitive tasks
and streamline your project management. These workflows are designed to save you time and
ensure that your project board stays up to date with minimal manual effort. In this section, we’ll
explore the various automation options available and how you can leverage them to enhance

your workflow.

Automation in GitHub Projects allows you to set up rules that trigger specific actions based on
certain events. For example, you can automatically move an issue to the “In progress” column
when it’s assigned to someone, or close an issue when it’s marked as “Done.” These automations

help keep your project board organized and reduce the need for manual updates.
Some of the ways you can automate your projects include the following:

e Using built-in automations
e Using GitHub Actions
e Using the REST API

We will examine these one by one.

Using built-in automations

GitHub Projects provides built-in workflows that can automatically add items from repositories
that match a filter, move items to different columns based on specific criteria, and archive items
that meet certain conditions. These built-in automations help keep the project board organized

and reduce the need for manual updates.

328 Project Management with GitHub Projects

To use built-in automations, visit your project board, click the ellipses (...) on the right-hand side,

and select Workflows.

8- +- 0 n a

Add status update I~ [-
| % Workflows |
= Archived items ,
§83 Settings
Yimate: 0 (2} Make a copy
pleted

GitHub Projects
77 What's new
[J Give feedback

1] GitHub Docs

Figure 14.12: Built-in workflows are accessible from the project’s menu
This will display a list of available built-in workflows.

To modify a workflow, select it and click Edit. This will switch to edit mode. Make the changes
and click Save and turn on workflow. The example in the following figure will automatically

mark a card as Done if the corresponding issue or pull request is closed.
Item closed Discard Save and turn on workflow

@) When anitem is closed

issue, pull request -

Setvalue

Status: Done ~

Figure 14.13: Workflow to mark items as “Done” when closed

Chapter 14

329

Hereis alist of built-in workflows available on GitHub Projects as of the time of writing this book:

Workflow Description

Item added to project Set the value of a card’s Kanban lane as soon as its issue or
pull request is added to the project.

Item reopened Set the value of a card’s Kanban lane as soon as its issue or
pull request is reopened.

Item closed Set the value of a card’s Kanban lane as soon as its issue or

pull request s closed.

Code changes requested

Set the value of a card’s Kanban lane as soon as its pull

request has a change request review.

Code review approved Set the value of a card’s Kanban lane as soon as its pull
request is approved.
Pull request merged Set the value of a card’s Kanban lane as soon as its pull

request is merged to the destination branch.

Auto-archive items

Archive cards that meet defined criteria.

Auto-add to project

Automatically add items from a repo that meet a defined

criteria to the project.

Auto-close issue

Automatically close a corresponding issue when the card is

set to a predefined Kanban status.

Auto-add sub-issues to project

When an item in the project has sub-issues, add sub-issues

to the project.

Table 14.2: List of built-in workflows on GitHub Projects

If automation doesn’t trigger as expected, ensure your issue has the correct label

applied.

\E/ Built-in automations are limited to predefined triggers. If you need more custom-

ized behavior—such as updating labels based on review status or auto-assigning

reviewers—you’ll need to use GitHub Actions or webhooks.

330 Project Management with GitHub Projects

Using GitHub Actions

GitHub Actions allows you to create custom workflows that automate various project management
tasks. For example, you can create a workflow that runs every time an issue is created to add a
label and leave a comment. GitHub Actions can also be used to automate tasks such as adding
pull requests to a project and updating the status of issues. I won’t go into details of creating a
GitHub Actions workflow here due to the advanced level of understanding required. For more

information on how to do this, visit the GitHub documentation to learn more: https://docs.
github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/

automating-projects-using-actions.

Using the REST API

The GitHub REST API enables you to programmatically manage your projects. You can use the API
to create, update, and delete project boards, columns, and cards. This allows for more advanced
and customized automation, such as integrating with other tools and services to enhance your
project management workflows. This is beyond the scope of this book, but you can learn more
by reading the GitHub documentation: https://docs.github.com/en/issues/planning-and-

tracking-with-projects/automating-your-project/using-the-api-to-manage-projects.

By effectively using project boards and implementing subtle automations, you can improve team
collaboration, visualize work, and ensure that everyone is aligned and working toward the same
goals. This not only enhances productivity but also helps in managing complex projects more

efficiently.

Awesome! What a chapter packed with a lot of learning! Let’s summarize what we have learned.

Summary

As we reach the end of this chapter, we reflect on our journey through the intricacies of GitHub
Projects. We delved into the various features and functionalities and explored how to effectively

manage tasks, track progress, and enhance collaboration within a project team.

We learned how to create and customize project boards, add and manage cards, and utilize built-in
automations to keep our projects organized. You can now automate tasks using built-in workflows

and GitHub Actions. We also practiced integrating Projects with issues, milestones, and cards.

The knowledge and skills you have acquired would undoubtedly empower you to work more

efficiently and cohesively, ultimately leading to better project outcomes.

https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/automating-projects-using-actions
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/automating-projects-using-actions
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/automating-projects-using-actions
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/using-the-api-to-manage-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project/using-the-api-to-manage-projects

Chapter 14 331

Up next, we'll explore GitHub’s built-in security tools and permission settings to help you protect

your repositories and manage user access — a key area tested in the certification exam.

Let’s do a short quiz.

Test your knowledge
Remember the steps for creating a board, managing columns and cards, and using built-in auto-

mation. These are core objectives in the Foundations exam blueprint.

1. Which of the following automation options in GitHub Projects allows you to automatically
add items from repositories that match a filter?
a. GitHub Actions
b. Built-in automations
c. REST API
d. Manual updates
2. In GitHub Projects, which layout is particularly useful for teams that need to track work
visually and manage tasks dynamically?
a. Boardlayout
b. Table layout
c. Roadmap layout
d. Kanban layout
3. Whatis the maximum number of active items allowed in a GitHub project before archiving
is required?
a. 1,000 active items
b. 1,200 active items
c. 10,000 active items

d. 12,000 active items

Useful links

e Planning and tracking with Projects: https://docs.github.com/en/issues/planning-

and-tracking-with-projects

e Automatingyour project:https://docs.github.com/en/issues/planning-and-tracking-
with-projects/automating-your-project

https://docs.github.com/en/issues/planning-and-tracking-with-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project
https://docs.github.com/en/issues/planning-and-tracking-with-projects/automating-your-project

332 Project Management with GitHub Projects

[=

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://packtpub.com/unlock

15

Security Practices and User
Management

Welcome to Chapter 15, where we explore the essentials of GitHub security and user management!
By now, you're familiar with the essentials, you have collaborated effectively, and you've started
leveraging GitHub for your career. Now, it’s time to focus on protecting your work. In this chapter,
we’ll explore GitHub’s built-in security features — such as setting up two-factor authentication,
managing user permissions, and securing your CI/CD pipelines. These practices are critical for

maintaining repository integrity and will also help you prepare for the certification exam.
We will cover the following main topics:

e GitHub security features
e Managing access and permissions

e Best practices for repository security

Technical requirements
e A GitHub individual account

e The organization you created in Chapter 2, Navigating the GitHub Interface

GitHub security features

In this section, we’ll explore the various security features GitHub offers to help you protect your

repositories and manage user access effectively.

334 Security Practices and User Management

Two-Factor Authentication (2FA)

Two-factor authentication adds an extra layer of security to your GitHub account beyond just your
password. By requiring a second form of verification, it ensures that even if someone gets hold of

your password, they won’t be able to access your account without the second factor.

2FA s crucial for securing your account for enhanced security, mitigating against credential theft,
protecting against phishing, and complying with security standards in many organizations and

projects. Which 2FA methods are configurable on GitHub?

Available 2FA methods

GitHub offers several methods for enabling Two-Factor Authentication (2FA) to enhance the

security of your account. Here are the available 2FA methods:
e Time-Based One-Time Password (TOTP) authenticator apps:

e Useapps such as Google Authenticator, Authy, or Microsoft Authenticator to gen-

erate a time-based code

e Recommended for its reliability and security
e Short Message Service (SMS):

e Receive a verification code via text message
e Less secure compared to TOTP apps, but still an option

e Physical security keys:

e Use hardware devices such as YubiKeys that support FIDO U2F or WebAuthn

standards

e Provide a high level of security by requiring physical possession of the key

e Virtual security keys:

e Utilize built-in security features of personal devices, such as Windows Hello, Face
ID, or Touch ID

e Convenient and secure, leveraging device-specific authentication

Chapter 15 335

e GitHub Mobile:

e Use the GitHub Mobile app to authenticate using public-key cryptography

e Doesnotrely on TOTP and provides a seamless experience

Two-factor authentication

Two-factor authentication adds an additional layer of security to your account by requiring more than just a password to sign in. Learn more
about two-factor authentication.

Preferred 2FA method

Set your preferred method to use for two-factor authentication when signing inte GitHub.

Security keys H

Two-factor methods

D Authenticator app (Configured) Edit

Use an authentication app or browser extension to get two-factor authentication codes when prompted.

D SMS/Text message Add

Gel cne-time codes sent to your phone via SMS to complete authentication requests.

(1) Security keys (Configured) 1key Edit

Security keys are webauthn credentials that can only be used as a second factor of authentication.

) GitHub Mobile Add

GitHub Mobile can be used for two-factor authentication by installing the GitHub Mobile app and signing in to your account

Figure 15.1: Available 2FA methods on GitHub

These methods offer flexibility and varying levels of security, allowing you to choose the one that
best fits your needs. For the highest security, it’s recommended to use TOTP apps or physical
security keys. Let’s take a look at how to set this up.

Certification tip

|
-\@’— The GitHub Foundations exam often includes questions on 2FA setup and best prac-

tices. Make sure you understand both how to enable 2FA and how to use recovery
methods.

336 Security Practices and User Management

Setting up 2FA on GitHub

To add an extra layer of security to your GitHub account, enable two-factor authentication (2FA)

by following these steps:

1. Gotoyour GitHub individual account settings by clicking on your avatar in the top-right-

hand corner and clicking on Settings.
2. Intheleft sidebar, under Access, click on Password and authentication.
3. Ifnotenabled yet, select Enable two-factor authentication.
4. Under Two-factor authentication, click Add next to the 2FA method of choice.
5

Follow the prompts to set up 2FA using the method selected.
Optionally, you could set your preferred 2FA method if you enrolled in more than one.
That’s it! You're all set up.

You will also notice Recovery codes under the Recovery options section (this section will appear

only if the 2FA method is set).

Recovery codes are essential for regaining access to your GitHub account if you lose access to your
2FA credentials. These codes act as a backup method, allowing you to log in even if you can’t use
your primary 2FA method, such as an authentication app or SMS. When you enable 2FA, GitHub
provides a set of recovery codes that you should store securely, such as in a password manager
or a safe place. If you ever lose access to your 2FA device, you can use one of these recovery codes

to regain entry to your account, ensuring you are not permanently locked out.

\/‘/' GitHub gives you 8 recovery codes. Store them securely. You can regenerate these if

needed, but old ones will be invalidated.

Branch protection rules

\/‘/' We discussed branch protection rules extensively in Chapter 5, Branching and Merging

Strategies. Be sure to read this in preparation for your exam.

Chapter 15 337

Branch protection rules help you enforce certain workflows and requirements before changes
can be merged into your protected branches. This ensures that your codebase remains stable and
secure. You can configure branch protection rules and, among many other measures, enforce code

reviews, ensuring that all changes are reviewed and approved before they are merged.

Certification tip

\ 7/

/@ You’ll need to know how to configure branch protection rules and enable Depend-

abot alerts for the exam.

Security configurations

GitHub provides various security settings as a collection that you can configure to enhance the
security of the repositories in your organization. You can create a customized security configura-
tion from scratch or choose the GitHub-recommended configuration that already comes preset

with its settings.

GitHub-recommended security configurations are predefined settings that follow best practices
to enhance security, such as enabling Dependabot alerts and secret scanning by default. Custom
configurations, on the other hand, allow you to tailor security settings to meet specific needs
or requirements of your project or organization, providing flexibility to adjust features such as

branch protection rules and access controls.
To manage security settings at the organization level:

1. Go to your organization’s main page on GitHub (remember that this is an organization,
not a repo). For more information on how to create an organization, review Lab 2.1in Chapter

2, Navigating the GitHub Interface.
Click on Settings.
In the left sidebar, under Security, click Advanced Security to expand.

Then click on Configurations.

AR

Choose to edit the GitHub-recommended security configuration by clicking on the edit

(/) icon. Alternatively, you can click on New configuration to customize a new one.

6. Configure the security settings as needed.

338

Security Practices and User Management

To manage repository-specific security settings:

1.

2
3.
4

\

Navigate to the repository’s main page on GitHub.
Click on Settings.
In the left sidebar, under Security, click Advanced Security.

Enable or configure security features such as Dependabot alerts, secret scanning, and
code scanning. The latter two may be missing from your view if the repository is private

or internal.

Y Secret scanning and code scanning are GitHub Advanced Security features
\/;B> and are only available as a paid subscription for private or internal repos-

itories, or free if your repository is open source, that is, visibility is Public.

Optionally, if you wish to configure secret scanning or code scanning, click on General
from the left sidebar and scroll down to Danger Zone. Next to Change repository visibility,

click on Change visibility and select Change to public. Be sure to follow the instructions.

Certification tip

v Questions may come up regarding changing the visibility of a repository from public

/@\ to private, or vice versa. Be sure to understand the implications of making a repo

public. Read more about public repositories in Chapter 2, Navigating the GitHub In-
terface and Chapter 11, Contributing to Open Source Projects.

Dependabot, secret scanning, and code scanning are all examples of security features that GitHub

offers. Some of these features require a paid subscription, some are free only for public repositories,

while others are completely free out of the box.

What is Dependabot?

Dependabot is a feature on GitHub that helps keep your project’s dependencies up to date auto-

matically. It works by regularly checking your project’s dependency files (such as package. json,

requirements.txt, etc.) for outdated packages and then creating pull requests to update them

to the latest versions.

Chapter 15 339

Key features of Dependabot include the following:

e Automated dependency updates: It scans your project and creates pull requests to update

dependencies

Security alerts: It integrates with GitHub’s security features to alert you about vulnera-

bilities in your dependencies and can automatically fix them

e Customizable configuration: You can configure how often it checks for updates, which

dependencies to ignore, and more, using a dependabot. yml file

e Supports multiple languages: Works with JavaScript, Python, Ruby, Java, PHP, and more
Here is an example flow:

1. You enable Dependabot in your GitHub repository.
2. Itchecks for outdated or vulnerable dependencies.
3. [Itcreates a pull request with the updated version.
4.

You review and merge the pull request.

Now let’s talk about managing alerts and vulnerabilities.

Security alerts and vulnerability management
GitHub helps you stay on top of potential security issues with automated alerts and tools to
manage vulnerabilities. Let’s examine some of these:
e Dependabot alerts and security updates:
¢ Dependabot alerts: Automatically scans your dependencies for known vulnera-
bilities and notifies you if any are found
¢ Dependabot security updates: Automatically generates pull requests to update
vulnerable dependencies to secure versions

How can you enable and manage Dependabot alerts?

Go to the repository’s main page on GitHub.

a.
b. Click on Settings.

o

In the left sidebar, under Security, click Advanced Security.

e

Under Dependabot alerts, click Enable if not already enabled.

e. Afterward, you can review and manage alerts from the Security tab of the repos-

itory.

340 Security Practices and User Management

e Code scanning:

e CodeQL: A powerful code analysis engine that scans your code for security vul-
nerabilities and coding errors. It integrates with GitHub Actions to run scans on
every push or pull request.

e Autofix: Uses Al to suggest fixes for detected vulnerabilities, streamlining the

remediation process.

e Secretscanning: Detects and alerts you if sensitive information, such as API keys or pass-
words, is accidentally committed to your repository. This helps prevent unauthorized
access and potential security breaches.

e Security overview dashboard: Provides a centralized view of your security alerts and
vulnerabilities across all repositories. This dashboard helps you prioritize and manage

security issues more effectively.

e Vulnerability management integrations: Integrates with third-party vulnerability man-
agement tools to consolidate and prioritize vulnerabilities, automate risk mitigation, and

visualize alerts within your existing security posture.

Talking about third-party integrations, GitHub supports receiving Static Analysis Results Inter-
change Format (SARIF) reports from various third-party security tools. Some of the commonly

used tools include the following:

e ESLint: A popular tool for identifying and reporting on patterns found in ECMAScript/

JavaScript code

e Bandit: A tool designed to find common security issues in Python code

e Brakeman: A static analysis tool that checks Ruby on Rails applications for security vul-
nerabilities

e Checkmarx: A comprehensive Static Application Security Testing (SAST) tool

e Fortify: A suite of tools for static and dynamic application security testing

e SonarQube: An open source platform for continuous inspection of code quality

e Veracode: A cloud-based service for static and dynamic application security testing

Chapter 15 341

These tools generate SARIF files that can be uploaded to GitHub, allowing you to view and manage
security alerts directly within your repository.

To handle security advisories and alerts, navigate to the Security tab of the repository (you will
find this tab on both the organization and the repository levels). Examine the difference between the
Security tabs of both levels. You will notice a stark difference in what you see. This is because the
security overview at the organization level rolls up all the security advisories across all its repos,

whereas the scope of the repo level is limited to only vulnerability findings of that repo.

(@) Overview k] Repasitories 26 O Diseussions [Projects 4 (D Packages Ay Teams 9 A People 3 (D Seewrity | Insigits) Settings

Security

Overview sive tednsck
| - overview ‘Alort Trends and Insights 307055 Your rganization

D Aisk =

= Filter 2 archived-false toal:github [I+ £ Last 30 days = & Export LSV
& Coverage
[Deection Remedistion Praventicn
& Enablemant rends
| CoxdefL pull requust alerts Open alerts over time Group by: Severity =
| Secret scanning 10 aeon
o et Critical - Low
3 Dependabot [:
@ Code scanning 48k "
£ Secret scanning B e e e e e e e e e e e s e e

Detault z
Exparimantal 4

Rsquests
- 2
& Push protection bypass i eremrr el et e e e e e

a
Campaigns 1 02 san Jem 10 Jan e n 18 an 22 Jn 2t Fub 1
Start a reew gRcur 2aign 1o halp
toams remadiato code scaneing alrts with Age of alerts Reopened alerts Secrets bypassed View details
e hesp of Coplat Autnfis,

201 days = 0 o 0 st0

age of npen gers

e doring the

0 smcret Blocked sucossefuly
Youl can onity see data from repostaries far

which you have permisson to view

Figure 15.2: Security Overview at the organization level

These tools and features help you maintain a robust security posture by automating the detection

and management of vulnerabilities, ensuring your codebase remains secure.

In the next section, we will talk about how permissions and authorization can help in securing

your code.

342 Security Practices and User Management

Managing access and permissions

Effective management of access and permissions is crucial for maintaining the security and in-
tegrity of your GitHub repositories. This section delves into the various methods GitHub provides

to control who has access to your repositories and what they can do.

User roles and permissions

GitHub offers a range of user roles to help you manage access and permissions effectively. Un-

derstanding these roles is key to maintaining a secure and organized workflow.

Overview of different user roles

User roles on GitHub come in three tiers: roles at the Enterprise level, Organization level, and

Repository level. Here are the default roles at the Enterprise and Organization levels:

e Owner: The owner has full administrative access to the organization and its repositories.

This role can manage settings, users, and billing.

e Member: Members have basic access to repositories, typically for contributing code. They

can create issues, submit pull requests, and review code.

o Billing manager: Billing managers can manage billing settings such as changing billing
plans, managing payment methods, downloading and receiving receipts, or managing

sponsorships.

When inviting new collaborators to your organization for the first time, you choose one of these

three.

Certification tip

\ 7/

/@ Be prepared to identify role-based use cases. The exam may ask you to match specific

user scenarios with appropriate GitHub roles.

Assigning roles to users
To manage access within your organization, you can assign specific roles to members by following

these steps:

1. Navigate to your organization’s main page on GitHub.

2. Click on the People tab in the organization’s navigation bar.

Chapter 15 343

3. If the user doesn’t already exist in the organization, you can invite them by clicking on
Invite member.
4. Supply the user’s GitHub handle and click on Invite.

5. For an existing member, locate the user you want to assign a role to and click on the ellipsis

dropdown next to their name and select Change role....
6. Select the appropriate role and click on Send invitation (for new invitations) or Change

role (existing members).

Invite Ayo to mybusinessayo

Give them an appropriate role in the organization and add them to
some teams to give access to repositories.

Role in the organization

® Member
Members can see all other members, and can be granted access to repositories.
They can also create new teams and repositories.

O Owner
Owners have full administrative rights to the organization and have complete access
to all repositories and teams.

Send invitation

Figure 15.3: Example invitation showing the default available roles

7. Click on Change role...
8. Select the appropriate role (Owner or Member) from the list displayed.

9. Click on Change role.

344 Security Practices and User Management

10. Alternatively, if the user only needs to be a billing manager, click on the Invite a billing
manager link at the bottom of the user invitation screen (Step 3), or go to the organiza-

tion’s settings and select Billing and licensing from the left navigation bar and invite them.

[

<y

[

Invite a member to mybusinessayo

[£8]

Search by username, full name or email address

Invite a billing manager

Fig.15.4: Inviting a billing manager to GitHub

In addition to these three, GitHub provides some more granular roles that help you define granular

permissions to what a member can or cannot do at the different levels.

Here is a table of additional pre-defined roles that can be used:

Organization Roles Repository Roles

All-repository read Read

Grants read access to all repositories in the Read and clone repositories. Open and comment
organization. on issues and pull requests.

All-repository write Write

Grants write access to all repositories in the Triage permissions plus read, clone, and push to
organization. repositories.

All-repository triage Triage

Grants triage access to all repositories in the Read permissions plus manage issues and pull
organization. requests.

Chapter 15

345

All-repository maintain

Grants maintenance access to all repositories in

the organization.

Maintain

Write permissions plus manage issues, pull

requests, and some repository settings.

All-repository admin

Grants admin access to all repositories in the

organization.

Admin

Full access to repositories, including sensitive and

destructive actions.

CI/CD admin

Grants admin access to manage Actions
policies, runners, runner groups, network
configurations, secrets, variables, and usage

metrics for an organization.

Security manager

Grants the ability to manage security policies,
security alerts, and security configurations for

an organization and all its repositories.

Table 15.1: List of predefined roles at can be used at the Organization and Repository levels

In addition to these predefined roles, you can create custom roles with a select combination of

permissions if one of these predefined roles doesn’t exactly fit your needs. This can be done at

the Enterprise, Organization, and Repository levels.

&

to GitHub Docs for the latest availability.

Now let’s move on to using teams for access control.

Team management

The custom role feature is only available on GitHub Enterprise. In addition, the cus-

tom role at the Enterprise level is only available for preview as of early 2025. Refer

Teams allow you to group users and manage their access to repositories more efficiently. This is

particularly useful for larger organizations with multiple projects. A team can either be visible

or secret.

346 Security Practices and User Management

Visible teams can be seen and @mentioned by members of the organization, while secret teams
can only be seen by their members. This will be specified during team creation. Teams can also

be nested, with one team being the parent of another team.
Team visibility

@ Visible Recommended
A visible team can be seen and @mentioned by every member of this organization.

(O Secret

A secret team can only be seen by its members and may not be nested.

Figure 15.5: A GitHub Team can be visible or secret
Let’s see how we create teams.
Creating and managing teams
Here’s how to create a team:

1. Go to your organization’s main page on GitHub.

Click on Teams in the organization’s navigation bar.

2

3. Click New team to create a new team.

4. Enter the team name and description, then click Create team.
5

Add members to the team by clicking Add a member and selecting users from the list.

Here are some important use cases for team visibility and notifications:

Feature Description Common Use Cases

Visibility Controls who can see the team Publicly list teams for collaboration.

in the organization (e.g., visible,) .. .

Hide sensitive teams (e.g., security) from
secret).
general org members.

Notification | Determines how team members Ensure relevant members are notified
receive notifications (e.g., mentions, | aboutissues/PRs.

discussions).
) Avoid notification fatigue for non-critical

teams.

Chapter 15 347

Assigning repository access to teams

To assign access to repositories to teams, do the following:

1. Navigate to the team’s page on GitHub.

2. Click on the Repositories tab in the team’s navigation bar.

3. Click Add a repository and select the repository you want to grant access to.
4

Set the desired permission level (Read, Triage, Write, or others) for the team. More roles and

the ability to create custom roles are available if you have a paid GitHub Enterprise subscription.

Collaborator access control

Collaborators are individuals who are granted access to specific repositories. This is useful for

managing external contributors or contractors.

Adding collaborators to repositories:

To give others access to a specific repository without adding them to the entire organization, you

can add them as collaborators:

1. Navigate to the repository’s main page on GitHub.
2. Click on Settings in the repository’s navigation bar.

3. In the left sidebar, click Collaborators and teams (org-owned repos) or Collaborators

(user-owned repos).
4. Click Add people and start typing the username of the person you want to add.

5. Selecttheir name and set the appropriate permission level (Read, Triage, Write, Maintain,

Admin) for the collaborator.

Setting permissions for collaborators:

Once collaborators are added, you can adjust their access levels using the following steps:

1. Inthe Collaborators and teams section, find the collaborator you want to manage.

2. Click on their permission dropdown and select the desired permission level.

One common pitfall is misconfigured roles or permissions, which can inadvertently expose
sensitive code. For example, imagine a scenario where a developer creates a private repository for
an internal tool but mistakenly assigns a Read role to an external contractor at the organization
level. Because the repository inherits permissions from the organization, the contractor now has
unintended access to the private repository. This kind of oversight can lead to accidental data

leaks or unauthorized code access.

348 Security Practices and User Management

To prevent such incidents, always follow the principle of least privilege, regularly audit repository

access, and use fine-grained personal access tokens for automation and integrations.

Another great feature to manage access and permissions is tokens. Two examples of tokens on
GitHub are OAuth and Personal Access Tokens (PAT).

OAuth and personal access tokens

OAuth and personal access tokens provide secure ways to authenticate and authorize access to
your GitHub account and repositories. These methods are essential for integrating third-party
applications and services, that is, when you are not using an interactive login of a person. Here’s

where you’ll find each of these on GitHub:

Managing OAuth applications
To review and manage third-party applications connected to your GitHub account, follow these
steps:

1. Go to your GitHub account settings.

2. Intheleft sidebar, click Developer settings.

3. Click OAuth Apps to view and manage your OAuth applications.

4

Review the list of authorized applications and revoke access if necessary.

Creating and using personal access tokens
To authenticate non-interactive scripts or services, you can generate a personal access token as
shown below:
1. Go to your GitHub account settings.
In the left sidebar, click Developer settings.
Click Personal access tokens.

Select either Fine-grained tokens or Tokens (classic) in the submenu.

oA W

Click Generate new token (for fine-grained tokens) or select Token (classic) again for

the classic token option.

6. Select the scopes or permissions you want to grant this token, such as repo, admin:org,
or user.

7. Click Generate token and copy the token for use in your applications. Store it securely, as

it will not be displayed again.

Chapter 15

349

&

GitHub: classic and fine-grained.

You would notice by now that there are two types of personal access tokens on

Both types co-exist, with classic being the older. Itis expected that GitHub will deprecate classic

PAT in favour of fine-grained PAT in the future, but both of them can be used interchangeably

today. Let’s quickly enumerate the differences between the two.

Feature Fine-grained PAT Classic PAT
Granularity of Highly specific — can grant access to | Broad — grants access to all
Permissions individual repositories and specific | repositories the user has
actions (e.g., read-only for issues) access to, with less control over
specific actions
Repository Scope Can be limited to specific Applies to all repositories the

repositories

user has access to

Token Expiration

Supports setting expiration dates

Optional expiration (can be set

or left indefinite)
Security More secure due to the least- Less secure due to broader
privilege principle and fine-grained | access scope
control
Use Case Ideal for automation, CI/CD, and Suitable for legacy systems or
integrations requiring limited tools that don’t yet support
access fine-grained tokens
Revocation Can revoke access to individual Must revoke the entire token to
repositories without revoking the remove access
entire token
Availability Recommended for new integrations | Still supported but being phased
outin favor of fine-grained
tokens
Token Visibility Token permissions are visible and Less visibility into specific
auditable in detail permissions granted
Scopes Uses granular repository and Uses broad OAuth-like scopes

permission settings

(e.g., repo, admin:org)

350 Security Practices and User Management

In summary, GitHub offers a range of measures to manage access and grant permissions to users
and third-party applications and services. It is important to know which ones to combine to ensure

the security of your code. Up next, let’s consider some good security practices for repo security.

Best practices for repository security

Ensuring the security of your repositories is paramount to protecting your code and maintaining
the integrity of your projects. In this section, we’ll cover best practices for securing your repos-

itories on GitHub.

Code scanning with Static Application Security Testing
(SAST) tools

Static Application Security Testing (SAST) tools help identify security vulnerabilities in your
codebase before they become issues in production. GitHub has a code scanning product. It is
sold separately but can be integrated natively into your repos and organizations. It’s labelled
GitHub Advanced Security (GHAS). GHAS is a paid subscription product, an add-on that you
can purchase in addition to your GitHub subscription. If your codebase is open source, most of

GHAS’s security features are free for use.

Here’s how to integrate and use these tools. You have to do this on a public repo if you haven’t
purchased GHAS:

e Integrating SAST tools in your workflow: Here’s how to set up code scanning with SAST

tools:

Navigate to the repository’s main page on GitHub.

a.
b. Click on Security in the repository’s navigation bar.

o

Click Set up code scanning.

e

Choose a code scanning tool, such as CodeQL, and follow the prompts to config-

ure it.
Examples of SAST tools include the following:

e CodeQL: A powerful code analysis engine that scans your code for security vul-
nerabilities and coding errors
o Dependabot Alerts: Automatically scans your dependencies for known vulnera-

bilities and notifies you if any are found

Chapter 15 351

Interpreting scan results: To review and act on scan results, take the following steps:

a. Go to the Security tab of the repository.
b. Click on Code scanning alerts to view the results.

c. Review the alerts and take appropriate action to fix the identified issues.

Cl/CD pipeline security measures

Securing your Continuous Integration/Continuous Deployment (CI/CD) pipelinesis crucial to

ensure that your code remains secure throughout the development lifecycle. Follow these steps

to secure your pipelines:

Securing CI/CD Pipelines Using GitHub Actions: To secure your CI/CD pipelines, take
these steps:

Navigate to the repository’s main page on GitHub.
b. Click on Actions in the repository’s navigation bar.

c. Setup workflows to include security checks, such as running SAST tools or de-

pendency checks.
Mini-case example

A development team noticed that their CI/CD pipeline was deploying code with outdated
dependencies that had known vulnerabilities. The issue stemmed from a missing depen-
dency scanning step in their GitHub Actions workflow. To mitigate this, they integrated
Dependabot and added a step in their workflow to run npm audit during each build.
This change helped catch vulnerable packages early and prevented insecure code from

reaching production.

Implementing secrets management in workflows: To manage secrets securely in your

workflows, take these steps:

a. Go to the repository’s main page on GitHub.
b. Click on Settings.
c. Intheleft sidebar, click Secrets and variables.
d. Then, select Actions from the submenu.
Click New repository secret to add secrets, such as API keys or tokens, securely.
f. Reference these secrets in your GitHub Actions workflows to avoid exposing sen-

sitive information.

352 Security Practices and User Management

Monitoring and auditing activities
Regular monitoring and auditing of repository activities help you detect and respond to suspicious

actions promptly. Here’s how to monitor and audit activities:

e Using audit logs to monitor repository activities: To monitor repository activities, take

these steps:

a. Go to your organization’s main page on GitHub.
b. Click on Settings.

In the left sidebar, under the Archive section, click Logs,

o

&

Then, select Audit log from the submenu.

e. Review the audit log entries to monitor activities such as user logins, repository

changes, and permission updates.

e Setting up alerts for suspicious activities: To set up alerts for suspicious activities, take

these steps:

a. Use GitHub’s built-in security alerts to notify you of potential security issues.
b. Integrate with third-party monitoring tools to receive real-time alerts for suspi-

cious activities.

Incident response and recovery

Being prepared for security incidents and having a plan for recovery is essential for minimizing

the impact of security breaches. Follow these steps for incident response and recovery:
e Preparing for security incidents: To prepare for security incidents, take these steps:

a. Develop an incident response plan that outlines the steps to take in case of a
security breach.
b. Ensurethat all team members are aware of the plan and their roles in the response

process.

e Steps for incident response and recovery: To respond to and recover from security inci-
dents, take these steps:
a. Identify and contain the breach to prevent further damage.
b. Investigate the cause of the breach and assess the impact.

c. Remediate the vulnerabilities that led to the breach.

Chapter 15 353

d. Communicate with stakeholders and provide updates on the incident and recov-

ery efforts.

e. Review and update security policies and practices to prevent future incidents.

Et voila! This concludes the basics when it comes to security on GitHub. Let’s summarize what

we learned.

Summary

In this chapter, we delved into the intricacies of security practices and user management on GitHub.
We had already mastered the essentials of effective collaboration, but we know that with great
code comes great responsibility. We explored the robust security features GitHub offers, such as
two-factor authentication, which added an extra layer of security to our accounts. We learned
about the various methods available for 2FA, including authenticator apps, SMS, physical security
keys, and GitHub Mobile.

We also discussed branch protection rules, which ensured our codebase remained stable and
secure by enforcing workflows and requirements before changes could be merged. Additionally,
we examined security configurations, both GitHub-recommended and custom, to enhance the
security of our repositories. We looked at the management of security alerts and vulnerabilities
through tools such as Dependabot, CodeQL, and secret scanning, which helped us stay on top

of potential security issues.

Managing access and permissions was another crucial aspect we covered. We understood the
importance of user roles and permissions at different levels, from enterprise to repository, and
how to assign these roles effectively. We also explored the use of teams for access control, creat-
ing and managing teams to streamline our workflow. Finally, we looked at OAuth and personal
access tokens, which provided secure ways to authenticate and authorize access to our GitHub

account and repositories.

Overall, this chapter equipped us with the knowledge and tools to maintain a robust security

posture and manage user access effectively on GitHub.

Let’s do a short quiz.

354 Security Practices and User Management

Test your knowledge
Review all GitHub security and user management features, especially permission models, 2FA,

and CI/CD hardening techniques — they appear frequently on the certification.

1. Which of the following methods is considered the most secure for enabling Two-Factor
Authentication (2FA) on GitHub?
a. Short Message Service (SMS)
b. Time-Based One-Time Password (TOTP) authenticator apps
c. Virtual security keys

d. Physical security keys
2. Whatis the primary purpose of Dependabot Security Updates in GitHub?

To scan your code for security vulnerabilities and coding errors

b. To automatically generate pull requests to update vulnerable dependencies to

secure versions

c. Todetect and alertyou if sensitive information is accidentally committed to your
repository
d. To provide a centralized view of your security alerts and vulnerabilities across all

repositories

3. Which role in GitHub is best suited to managing security policies, security alerts, and
security configurations for an organization and all its repositories?
a. Owner
b. Security manager

Admin

o

a

CI/CD admin

Chapter 15 355

Useful links

e Authentication documentation: https://docs.github.com/en/enterprise-cloud@
latest/authentication

e About GitHub security features: https://docs.github.com/en/enterprise-cloud@
latest/code-security/getting-started/github-security-features#about-githubs-

security-features

e About GitHub Advanced Security: https://docs.github.com/en/enterprise-cloud@
latest/get-started/learning-about-github/about-github-advanced-security

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub.com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://shorturl.at/jevdZ
https://shorturl.at/jevdZ
https://shorturl.at/RNF8Y
https://shorturl.at/RNF8Y
https://shorturl.at/RNF8Y
https://shorturl.at/7ZMJY
https://shorturl.at/7ZMJY
https://packtpub.com/unlock

16

Mock Exams and Study
Strategies

Welcome to the final chapter of your GitHub Foundations Certification journey! As you prepare to
demonstrate your newfound knowledge, this chapter will guide you through a series of mock
exam questions designed to simulate the actual certification experience. These practice tests
will help you gauge your readiness, identify areas for improvement, and build the confidence

needed to excel.
We will cover the following topics:

e Areas of concentration — what to expect

e Mock exam questions

Let’s start with some tips.

Areas of concentration

Back in my uni days, the last class of the semester always had the highest attendance. Not many
students attend the classes early in the semester — some are just settling in from a different
university, or switching subjects or courses. Throughout the rest of the semester, attendance

usually fluctuates even if the lecturer attracts students with engaging lectures, assignments, or
the lack thereof ©.

358 Mock Exams and Study Strategies

However, as a student, there’s one class you don’t want to miss: the final class of the semester.
This is becauseitisin the last class that the lecturer will share insights into what to expectin the
exam and discuss the areas of concentration — that is, topic areas and domains of the subject to

focus your reading on to be well prepared for the exam.

I hereby present to you your areas of concentration.

What to expect

As mentioned in Sprint 0, Preparing for the Certification, you should get familiar with the proc-
tor-led exam process, where you want to take the exam (virtual or test center), identification
requirements, system requirements for the device you want to use if virtual, and the format of the
exam questions. Please read the chapter again and visit the exam registration website to know

the latest changes (if any) in the process and exam preparation guide.

Introduction to Git and GitHub questions — big deal

According to the exam preparation guide, questions on the basics of Git and GitHub, along with
questions on the collaborative features on GitHub, together cover about half of the exam score.
Therefore, I would strongly recommend spending more time understanding the concept of Git
in general, including some of the basic commands and interpreting what they do. You may be
asked to choose which Git command is correct from the options. Many of the options will have
incorrect syntax or semantics. Watch out for such tricky questions. Pay attention to the flags,

parameters, and where to use quotes.

Furthermore, you should understand the collaborative and social features that make GitHub great.
Perform activities such as creating issues/labels, commenting on issues, raising pull requests,
writing Markdown documents, and searching for issues using the search box and filter criteria.

GitHub has enhanced the search and filter functionality a lot.

[is:issue state:open g

) State .
Open 1 Author - Labels ~ Projects ~
(2 Sub-issue
@ [Requ 3 Commit SHA pplication #= enhancement must-have ([uifux
#3 . ayo tion Acce...
=4 Sort
¢: Status

Figure 16.1: The GitHub search functionality has a syntax

Chapter 16 359

Play around with this and examine the behavior. For more information, go to https://docs.
github.com/en/issues/tracking-your-work-with-issues/using-issues/filtering-and-

searching-issues-and-pull-requests.

Nuances of buttons and icons

You may be asked questions about the use of icon buttons on the different toolbars available on
GitHub. For example, on issue creation/commenting, they may ask what the purpose of the Task

list (9=) button is. Be sure to test out these buttons and examine their behaviors.

|
. Add a comment

& F =

i
®
=
i 3
&

b
1]

Write Preview H B

Jse Markdown to format your comment

Figure 16.2: Toolbar buttons

The GenAl evolution

GenAl-assisted coding is now becoming commonplace for software developers, and GitHub Co-
pilot is not an exception. Today, GitHub Copilot is a big part of the GitHub platform, so you will

come across a few questions about it.

Multiple-answer questions

Some questions will require you to select multiple answers from the choices provided. In such
cases, the question will typically tell you exactly how many answers to select. Therefore, even if
you feel there are more answers that match the question, do not select more than the number of

answers specified. Here’s an example:

You have just completed development work for all the new features in the current iteration of your project,
and you have just drafted a pull request. You are required to link the corresponding issues and tasks for the
features developed to the pull request to ensure they are closed as soon as the merge is successful. Which

of the following statements do you need to add to the pull request? (Select three.)

o Closes #45

o close #45

o fix#45

o complete #45
e Completes #45

https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/filtering-and-searching-issues-and-pull-requests
https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/filtering-and-searching-issues-and-pull-requests
https://docs.github.com/en/issues/tracking-your-work-with-issues/using-issues/filtering-and-searching-issues-and-pull-requests

360 Mock Exams and Study Strategies

In this question, any of the first three options can satisfy the question, but you have to select all

three correct answers, not fewer and not more.

GitHub gists and wikis

We didn’t spend much time talking about GitHub gists or wikis, but they are also product features
you may encounter as a developer. A wiki is a section that helps you host documentation in a

structured format and outline (think of Wikipedia pages).

On the other hand, gists provide quick ways to save and share code snippets (think of the Jupyter
Notebook interface). Both are quick ways to create documentation, and they also support the
Markdown format, among others. Spend some time reading about them, though I don’t expect
thatyou will encounter them in more than 5% of the exam questions. Visit About wikis (https://
docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis)
and Creating gists (nttps://docs.github.com/en/get-started/writing-on-github/editing-

and-sharing-content-with-gists/creating-gists) tolearn more.

The amazing GHCertified!

Some wonderful members of the GitHub community have contributed heaps of practice ques-
tions with which you can test your knowledge. These questions are not from the original GitHub
exams. In fact, the code of conduct for contributing questions warns that they do not support
the inclusion of questions copied from the exams. However, they will no doubt help you in your

preparations. Visit ghcertified. com and attempt the over 130 questions available.

https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis
https://docs.github.com/en/communities/documenting-your-project-with-wikis/about-wikis
https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists
https://docs.github.com/en/get-started/writing-on-github/editing-and-sharing-content-with-gists/creating-gists
ghcertified.com

Chapter 16 361

GitHub Docs is your friend

Read the official documentation on docs. github. com, particularly the Get started section, as well
as the landing “overview” pages of each of the subcategories. In addition, there is now an AI-pow-
ered search box at the top of every page where you can get relevant answers to any questions. In

the following figure, I have highlighted the areas and topics you should focus on for this exam:

GitHub Docs '
Help for wherever you are on your GitHub 4
journey.

% Getstarted & Collaborative coding & GitHub Copilot & CI/CD and DevOps
Migrations Repositories Get code suggestions GitHub Packages

Account and profile Pull requests PFrompt engineering GitHub Pages
fuithentication GitHub Discussions Chat in GitHub

Billing el payrments Copilot Chat Cookbook

Site poticy Coding agent

@ Security [Client apps [Project management Enterprise and Teams
GitHub CLI GitHub Issues Qrganizations

Secrel seanning GitHub Mobile Projects Secure your coganization

Supply chain security Gitkub Desktop Search on GitHub Enterprise snboarding

Dependabot Enterprise administrators

Code seanning GitHub Wesl-Architected {5

Security adviscries

[Developers @ Community # Moredocs

Apps Building communities CodeQL query writing [3
REST APt GitHub Sponsors Electron (3

GraphGL AP GitHub Education npm 3

Webhooks. GitHub for Monprofits

Figure 16.3: GitHub Docs is very resourceful

Now, let’s improve our muscle memory by practicing some mock questions.

docs.github.com

362 Mock Exams and Study Strategies

Mock exam questions

Let’s first answer the knowledge questions in each of the previous chapters.

Answers to chapter quizzes

1. Gitand GitHub can be used interchangeably.

e Answer: False
e Where to read: Chapter 1, Introduction to Version Control with Git — Overview of Git
— Understanding the Git concept — Cloning

2. Which of the following is not a version control system?

e Answer: GitHub

e Where to read: Chapter 1, Introduction to Version Control with Git — Examples of

version control systems

3. You made some changes to the Python code in your repository. You need to ensure that
these changes have been added to version control. Which two commands do you need
to run to ensure your changes have been recorded?

e Answer:git addand git commit
e Where to read: Chapter 1, Introduction to Version Control with Git — Overview of Git
— Interacting with Git Repos — Git jargon and commands

4. A Gitrepository contains which of the following? (Select one.)

e Answer: .gitignore

e Where toread:

e Chapter 2, Navigating the GitHub Interface — Introduction to GitHub product

features

e Chapter 1, Introduction to Version Control with Git — Overview of Git — Git
configuration files

5. Which of the following can own a repository on GitHub? (Select two.)

e Answer: Individual and organization

e Where to read: Chapter 2, Navigating the GitHub Interface — GitHub account types

Chapter 16 363

10.

You have just joined an online fashion store company as a web developer, and your new
manager has asked youtorun gh issue create -t "New Employee" -a "@onboarding-
bot" to begin your onboarding process. On which of the following tools/products will

you run this?

e Answer: GitHub CLI. GitHub CLI commands start with the gh keyword. You can

only run commands in a terminal (i.e., CLI).

o Where to read: Chapter 2, Navigating the GitHub Interface — Other GitHub tools and
features — GitHub CLI

A developer on your team created a log file temporarily in their local repo. This log file is
stillimportant for local development, but they don’t want to commit it to the repo. What

can they do to keep the file saved without adding it to version control?
e Answer: Add the log file’s name to . gitignore
o Where to read: Chapter 3, Repository Creation and Management — Creating a new

repository — Initializing with README and .gitignore

Which of the following Markdown statements will produce this output: The Universe is
vast, reach for the stars.

e Answer: The **Universe** is vast, _reach for the stars._

o Where to read: Chapter 3, Repository Creation and Management — The Markdown

language and the GitHub Markdown

When setting up a new repo, which of the following Git commands do you need to run

to make the directory Git-aware?

e Answer:git init
e Where to read: Chapter 4, Basic Git Commands and Workflows — Common Git com-

mands — Setting up a repository
Which of the following branching models does not support short-lived branches?

e Answer: Git Flow

e Where to read: Chapter 4, Basic Git Commands and Workflows — Git workflows

364

Mock Exams and Study Strategies

11.

12.

13.

14.

15.

16.

17.

What s the primary benefit of using branches in Git for collaborative development?

e Answer: Itallows developers to work on different features simultaneously without
interfering with each other’s work.

o Wheretoread: Chapter 5, Branching and Merging Strategies — Understanding branches
in Git — Introduction to branches — Benefits of using branches

Which command is used to create and switch to a new branch simultaneously in Git?

e Answer:git checkout -b <branch-name>

o Wheretoread: Chapter 5, Branching and Merging Strategies — Understanding branches

in Git — Creating branches — Using the git command
What is a squash merge in Git?

e Answer: A merge strategy that combines all the commits from a feature branch

into a single commit before merging it into the main branch

e Where to read: Chapter 5, Branching and Merging Strategies — Merging and conflict

resolution — Types of merges.
What is the primary purpose of a pull request in collaborative software development?

e Answer: To merge code changes from one branch into another

e Where to read: Chapter 6, Pull Requests and Code Reviews — What is a pull request?
Which of the following is NOT a role typically involved in the code review process?

e Answer: Tester

e Where to read: Chapter 6, Pull Requests and Code Reviews — The pull request lifecycle

— Review process overview
What s a “diff” in the context of version control systems such as Git?

e Answer: Aformatused to show changes between two versions of a file or codebase

o Where to read: Chapter 6, Pull Requests and Code Reviews — Lab 6.1.
What is the primary purpose of using labels in GitHub Issues?

e Answer: To categorize and prioritize issues

e Where to read: Chapter 7, Issues, Projects, Labels, and Milestones — Introduction to

Issues — Labels

Chapter 16 365

18. Which of the following is NOT a default issue type in GitHub?

e Answer: Enhancement
o Where to read: Chapter 7, Issues, Projects, Labels, and Milestones — Introduction to

Issues — Types

19. How can issues be linked to pull requests in GitHub to ensure they are automatically

closed when the associated pull request is merged?

e Answer: By adding the issue number in the pull request description with a spe-
cific prefix
o Where to read: Chapter 7, Issues, Projects, Labels, and Milestones — Introduction to

Issues — Linking issues to pull requests
20. Which of the following is NOT listed as a key benefit of pipeline as code?

e Answer: Integrity

e Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub

Actions — How pipeline as code supports GitHub Actions
21. In the context of GitHub Actions, what is the purpose of an ephemeral runner?

e Answer: To ensure each job runs in a clean environment by unregistering itself
after a single job
o Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub

Actions — Key components of GitHub Actions — Jobs, steps, and runners
22. Which of the following is not an event that triggers a workflow pipeline?

e Answer: Pull
o Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub
Actions — Key components of GitHub Actions — Events that trigger a workflow

23. Which feature of GitHub Discussions helps maintain the flow of dialogue by grouping

related comments together?

e Answer: Threaded conversations

o Where toread: Chapter 9, Engaging with the Community Through GitHub Discussions

— Introduction to GitHub Discussions

366 Mock Exams and Study Strategies
24. Whatis the primary purpose of creating custom categories in GitHub Discussions?
e Answer: To organize conversations for community members
e Where toread: Chapter 9, Engaging with the Community Through GitHub Discussions
— Introduction to GitHub Discussions — Categories and custom categories
25. Which of the following is NOT a recommended best practice for fostering community
engagement in GitHub Discussions?
e Answer: Ignoring spam and inappropriate content
o Where toread: Chapter 9, Engaging with the Community Through GitHub Discussions
— Best practices for community engagement
26. Whatis a prerequisite for setting up a profile README . md file on GitHub?
e Answer: The repository name must match your GitHub handle (username).
e Where to read: Chapter 10, Building and Showcasing Your GitHub Presence — Show-
casing projects and contributions — Advanced profile setup
27. Which of the following is NOT a recommended section to include in your profile README .
md file?
e Answer: Your favorite recipes
o Where to read: Chapter 10, Building and Showcasing Your GitHub Presence — Show-
casing projects and contributions — Advanced profile setup
28. Whatis the first step in creating a GitHub Pages site?
e Answer: Creating a new repository named <username>.github.io
o Where toread: Chapter 10, Building and Showcasing Your GitHub Presence— Utilizing
GitHub Pages for personal branding — Setting up GitHub Pages
29. What is the primary benefit of contributing to open source projects?

e Answer: Gaining practical experience and improving coding skills
e Where to read: Chapter 11, Contributing to Open Source Projects — Navigating the
open source landscape — Introduction to open source — Benefits of contributing to open

source projects

Chapter 16 367

30. Which feature page on GitHub helps in discovering open source projects that align with
your interests and skills?
e Answer: GitHub Explore
o Where to read: Chapter 11, Contributing to Open Source Projects — Navigating the
open source landscape — Finding open source projects — Using GitHub’s Explore feature

31. Whatis the first step in contributing to an open source project on GitHub?

e Answer: Forking the repository

o Where to read: Chapter 11, Contributing to Open Source Projects — Lab 11.1: Making

your first contribution
32. Whatis the primary function of GitHub Copilot Chat, and how does it differ from ChatGPT?

e Answer: GitHub Copilot Chat is tailored for software development, providing
context-aware assistance within development environments, whereas ChatGPT

is a general-purpose conversational Al

o Where to read: Chapter 12, Enhancing Development with GitHub Copilot — Introduc-
tion to GitHub Copilot — Copilot Chat

33. Which of the following is NOT a feature of GitHub Copilot within the GitHub.com user
interface?

e Answer: Real-time collaboration with other developers
o Where to read: Chapter 12, Enhancing Development with GitHub Copilot — Introduc-

tion to GitHub Copilot — Copilot within the GitHub.com UI

34. What is the key difference between GitHub Copilot Pro and GitHub Copilot Business

subscriptions?

e Answer: GitHub Copilot Prois available for individual users, while GitHub Copilot

Business is designed for organizations and enterprises.
o Where to read: Chapter 12, Enhancing Development with GitHub Copilot — Introduc-
tion to GitHub Copilot — Available subscriptions

35. Whatis one of the primary goals of GitHub Sponsors?

e Answer: To create a sustainable ecosystem where open source projects can thrive

o Where toread: Chapter 13, Funding Your Projects with GitHub Sponsors — Introduction
to GitHub Sponsors

368 Mock Exams and Study Strategies
36. Which of the following is NOT a benefit of using GitHub Sponsors?
e Answer: Guaranteed project success
o Where to read: Chapter 13, Funding Your Projects with GitHub Sponsors — Introduction
to GitHub Sponsors
37. Whatis a key requirement for becoming a sponsored developer on GitHub?
e Answer: Adhering to GitHub’s community guidelines and terms of service
e Where toread: Chapter 13, Funding Your Projects with GitHub Sponsors — Introduction
to GitHub Sponsors — Eligibility and requirements
38. Which of the following automation options in GitHub Projects allows you to automatically
add items from repositories that match a filter?
e Answer: Built-in automations
o Where to read: Chapter 14, Project Management with GitHub Projects — Automating
project workflows
39. In GitHub Projects, which layout is particularly useful for teams that need to track work
visually and manage tasks dynamically?
e Answer: Board layout
o Where to read: Chapter 14, Project Management with GitHub Projects — Introduction
to GitHub Projects — Important features — Project layout
40. Whatis the maximum number of active items allowed in a GitHub project before archiving
is required?
e Answer: 1,200 active items
e Where to read: Chapter 14, Project Management with GitHub Projects — Introduction
to GitHub Projects — Important features — Archiving items
41. Which of the following methods is considered the most secure for enabling Two-Factor
Authentication (2FA) on GitHub?
e Answer: Physical security keys
o Where toread: Chapter 15, Security Practices and User Management — GitHub security
features — Two-Factor Authentication (2FA)
42. Whatis the primary purpose of Dependabot security updates in GitHub?

Chapter 16 369

e Answer: To automatically generate pull requests to update vulnerable dependen-

cies to secure versions

o Where toread: Chapter 15, Security Practices and User Management — GitHub security

features — Security alerts and vulnerability management

43. Whichrolein GitHub is best suited to manage security policies, security alerts, and security

configurations for an organization and all its repositories?

e Answer: Security Manager

o Where to read: Chapter 15, Security Practices and User Management — Managing

access and permissions — User roles and permissions

Additional questions

1. Which of the following best describes the concept of “pipeline as code” in GitHub Actions?

a. A practice where the CI/CD pipeline is defined and managed using a graphical
user interface

b. A method of defining CI/CD pipelines using YAML files stored in the repository,
allowing version control and collaboration

c. Atechnique for automating code builds and deployments without using any con-
figuration files

d. A process of manually triggering workflows through the GitHub UI
Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub Actions

2. Whatis the primary difference between continuous delivery and continuous deployment
in the CI/CD pipeline?

a. Continuous delivery requires manual approval for deployment, while continu-
ous deployment automatically deploys every change that passes all stages of the
production pipeline

b. Continuous delivery automates the build process, while continuous deployment
automates the testing process

c. Continuous delivery is used for testing code, while continuous deployment is
used for building code

d. Continuous delivery and continuous deployment are the same and can be used

interchangeably

Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub Actions

370 Mock Exams and Study Strategies

3. Which of the following is NOT a key benefit of using GitHub Actions for CI/CD pipelines?
a. Integration with GitHub repositories, making it easy to trigger workflows based
on repository events
b. Customizability of workflows using YAML syntax
The ability to define and manage pipelines using a graphical user interface

d. Access to avastlibrary of prebuilt actions in the GitHub Marketplace

Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub Actions
— Key benefits of pipeline as code

4. In GitHub Discussions, what is the primary purpose of using polls?

a. To create nested discussions

b. To gather feedback on new ideas, features, or project directions
c. To organize conversations for community members

d. Tomanage active work on issues and pull requests

Where to read: Chapter 9, Engaging with the Community Through GitHub Discussions — In-

troduction to GitHub Discussions
5. How do you fork a repository on GitHub?

a. Byusingthegit fork command
b. By clicking the Fork button on the repository’s GitHub page
c. Byusingthe github fork command

d. Byusingthegit --f repocommand

Where to read: Chapter 3, Repository Creation and Management — Collaboration and permis-

sions — Forking and pull requests
6. Which of the following are GitHub Copilot subscription plans? (Select two.)

a. Copilot Enterprise
b. Copilot Organization
c. Copilot Free

d. Copilot Premium

Where to read: Chapter 2, Navigating the GitHub Interface — GitHub overview and offerings
— Available plans and offerings

Chapter 16 371

7. Which of the following is a correct hierarchical relationship on GitHub? (Select two.)

a. Enterprise a Repository

b. Organization a Repository

c. Tenant a Enterprise a Repository

d. Enterprise a Organization 4 Repository

Where to read: Chapter 2, Navigating the GitHub Interface — GitHub overview and offerings
— GitHub account types

8. How do you add a collaborator to a GitHub repository?

a. Byusingthegit add-collaborator command

b. By navigating to the repository settings and adding the collaborator
c. Byusingthe github add-collaborator command

d. By sending them a friend request from the top-right corner

Where to read: Chapter 15, Security Practices and User Management — Managing access and

permissions — Collaborator access control
9. Whatis the primary difference between a branch head and HEAD in Git?
a. A branch head refers to the latest commit in a branch, while HEAD refers to the

current branch or commit being worked on

b. A branch head refers to the current branch or commit being worked on, while

HEAD refers to the latest commit in a branch
Both a branch head and HEAD refer to the latest commit in a branch

d. Bothabranch head and HEAD refer to the current branch or commit being worked
on

Where to read: Chapter 5, Branching and Merging Strategies — Understanding branches in Git

10. Which command is used to switch to an existing branch in Git?

git branch <branch-name>

a.
b. git checkout <branch-name>

o

git checkout -b <branch-name>

d. git switch <branch-name>

Where to read: Chapter 5, Branching and Merging Strategies — Understanding branches in

Git — Creating branches

372

Mock Exams and Study Strategies

11.

What is the primary purpose of branch protection rules on GitHub?

a
b.
C.

d.

To prevent direct pushes and accidental deletions
To simplify the commit history by combining all commits into a single commit
To automatically resolve conflicts between different branches

To create and switch to a new branch simultaneously

Where to read: Chapter 5, Branching and Merging Strategies — Branch management techniques

— Branch protection rules on GitHub

12. How do you protect a branch on GitHub?

a
b.

C.

d.

By using the git protect-branch command
By navigating to the repository settings and configuring branch protection rules
By clicking on the padlock button next to the repo to activate branch protection

By using the github protect-branch command

Where to read: Chapter 5, Branching and Merging Strategies— Branch management techniques

— Branch protection rules on GitHub

13. Which of the following is NOT a feature of GitHub Issues?

14.

a
b.
C.

d.

Timeline trail
Sub-issues
Custom fields

Reactions

Where to read: Chapter 7, Issues, Projects, Labels, and Milestones — Introduction to Issues

Imagine you are working on a software project and encounter a bug where the application

crashes upon login. Which of the following steps is NOT part of the process to create a
GitHub issue for this bug?

a
b.

o

a

Enter a brief summary of the issue in the Title field
Provide a detailed description of the issue, including steps to reproduce the bug
Assign the issue to multiple team members

Automatically close the issue by merging a pull request

Where to read: Chapter 7, Issues, Projects, Labels, and Milestones — Introduction to Issues

Chapter 16 373

15. How do you enable GitHub Discussions for a repository?

a. Bynavigating to the repository settings and enabling Discussions
b. GitHub Discussions is only available in the GitHub Pro subscription
c. By creating a new organization

d. Byusingthegit enable-discussions command

Where to read: Chapter 9, Engaging with the Community Through GitHub Discussions — Lab
9.1: Enabling GitHub Discussions at the repository level

16. You are managing a large project with multiple tasks and deadlines. Which GitHub feature
would you use to group related issues and track progress toward a common goal?
a. Labels
b. Milestones
c. Assignees

d. Reactions
Where to read: Chapter 7, Issues, Projects, Labels, and Milestones
17. In GitHub Actions, what is the role of a runner group?

a. To execute workflows manually
b. To categorize multiple runners with the same specifications and behavior
c. To trigger workflows based on repository events

d. To store YAML files in the repository

Where to read: Chapter 8, GitHub Actions and Automation — Introduction to GitHub Actions

— Understanding workflows
18. Whatis a GitHub gist?

a. Afull repository
b. A snippetof code or text
c. Abranch

d. Apullrequest

Where to read: Chapter 16, Mock Exams and Study Strategies — Areas of concentration

374 Mock Exams and Study Strategies

19. Youare part of a development team that needs to run tests on multiple operating systems

and configurations. Which GitHub Actions feature would help you achieve this efficiently?

a. Single runner
b. Ephemeral runner
c. Matrix builds

d. GitHub-hosted runner

Where to read: Chapter 8, GitHub Actions and Automation — CI/CD with GitHub Actions —
Advanced CI/CD techniques

Conclusion

As we reach the end of our journey through the GitHub Foundations Certification guide, it’s time
to reflect on the incredible progress you’ve made and the exciting opportunities that lie ahead.
This book has equipped you with the essential knowledge and skills to navigate the world of Git

and GitHub with confidence and proficiency.

From learning about the basics of version control and repository management to understanding
the intricacies of collaborative development, you’ve built a solid foundation that will serve you
well in your career. You've learned how to leverage GitHub’s powerful features to streamline
your workflows, enhance team collaboration, and contribute meaningfully to the open source

community.

We also explored how to showcase your GitHub presence and use it as a platform to advance
your career. By building a strong profile, engaging with the community, and contributing to open
source projects, you've positioned yourself as a valuable asset in the tech industry. The GitHub
Foundations Certification is not just a testament to your technical skills but also a reflection of
your commitment to continuous learning and professional growth. The skills you’ve acquired

will be your guiding light.

In the final chapters, we delved into advanced topics and exam preparation strategies to ensure
you're fully equipped to ace the certification. The mock exams and study tips provided will help
you approach the exam with confidence and clarity. Remember, the key to success is not just

memorizing facts but understanding concepts and applying them in real-world scenarios.

Thank you for taking the time to read through this guide. Your dedication to improving your

GitHub skills is commendable, and I hope you found the information valuable.

Chapter 16 375

What's next after certification?

Once you have achieved this certification, it’s time to put your new skills into practice. Continue
exploring GitHub’s features and stay updated with the latest developments. You will typically
find the latestnews on https://github.blog, and new feature releases and changes on https://

github.blog/changelog.

Remember, the journey of learning never truly ends. You can consider pushing your boundaries
by taking other GitHub certification exams. I would recommend either the GitHub Copilot or the

GitHub Administration Certification exam.

Engage with the community, contribute to open-source projects, and keep building your portfolio.

Your next big project is just around the corner!

If this book has helped you pass the exam or you learned a thing or two from reading the book,
I'd love to hear from you. Please reach out to me on LinkedIn (https://www.linkedin.com/in/

ayodeji-ayodele?originalSubdomain=au).

Happy coding and good luck in your exams!

Unlock this book’s exclusive
benefits now

Scan this QR code or go to packtpub. com/unlock,

then search this book by name.

Note: Keep your purchase invoice ready before you

start.

https://github.blog
https://github.blog/changelog
https://github.blog/changelog
https://www.linkedin.com/in/ayodeji-ayodele?originalSubdomain=au
https://www.linkedin.com/in/ayodeji-ayodele?originalSubdomain=au
https://packtpub.com/unlock

17

Unlock Your Book’s
Exclusive Benefits

Your copy of this book comes with the following exclusive benefits:

+ Next-gen Packt Reader
+ Al assistant (beta)

&l DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1

Have your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visithttps: //www. packtpub. com/unlock-benefits/help.

\/‘n’l Note: Did you buy this book directly from Packt? You don’t need an invoice. After

completing Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help.

https://www.packtpub.com/unlock-benefits/help.

378 Unlock Your Book’s Exclusive Benefits

Step 2

Scan this QR code or go to packtpub.com/unlock.

of

On the page that opens (which will look similar to Figure X.1if you’re on desktop), search for this

book by name. Make sure you select the correct edition.

o
<L Search... Subscription .'Q"? 9

Explorn Praducts Bost Sollers Mow Releoses Books Wideos Audinbooks Learnirg Hub Newsletter Hub Free Learning

Discover and unlock your book's exclusive benefits

Bought a Packt book? Your purchase may come with free bonus benefits designed to maximise your learning. Discover and unlock them here

[]
Discover Benefits Sign Up/In Upload Invoice
Heed Help?
% 1. Discover your book’s exclusive benefits ~
G, Search by titlo ar ISEN

% 2.Loginor sign up for free W

&4 3. Upload your invoice and unlock 4

Figure 17.1: Packt unlock landing page on desktop

Step 3
Once you've selected your book, sign in to your Packt account or create a new one for free. Once
you’re logged in, upload your invoice. It can be in PDF, PNG, or JPG format and must be no larger

than 10 MB. Follow the rest of the instructions on the screen to complete the process.

http://packtpub.com/unlock

Chapter 17 379

Need help?

If you get stuck and need help, visit https://www.

packtpub.com/unlock-benefits/help for a detailed
FAQ on how to find your invoices and more. The fol-

lowing QR code will take you to the help page directly:

\/V; Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help
customercare@packt.com

<packt

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you
Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Atwww.packtpub.com, you can also read a collection of free technical articles, sign up for arange

of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

www.packtpub.com
www.packtpub.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering
GitHub Actions

ERIC CHAPMAN

Mastering GitHub Actions
Eric Chapman
ISBN: 978-1-80512-862-5

e Explore GitHub Actions’ features for team and business settings

e Create reusable workflows, templates, and standardized processes to reduce overhead
e Getto grips with CI/CD integrations, code quality tools, and communication

e Understand self-hosted runners for greater control of resources and settings

e Discover tools to optimize GitHub Actions and manage resources efficiently

e Work through examples to enhance projects, teamwork, and productivity

https://www.packtpub.com/en-us/product/mastering-github-actions-9781805123309

384 Other Books You May Enjoy

Automating
Workflows with

GitHub Actions

Automating Workflows with GitHub Actions
Priscila Heller
ISBN: 978-1-80056-040-6

e Getto grips with the basics of GitHub and the YAML syntax

e Understand key concepts of GitHub Actions

e Find out how to write actions for JavaScript and Docker environments
e Discover how to create a self-hosted runner

e Migrate from other continuous integration and continuous delivery (CI/CD) platforms

to GitHub Actions

e Collaborate with the GitHub Actions community and find technical help to navigate

technical difficulties

e Publish your workflows in GitHub Marketplace

https://www.packtpub.com/en-us/product/automating-workflows-with-github-actions-9781800569034

Other Books You May Enjoy 385

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors. packtpub.comand apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished GitHub Foundations Certification Guide, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

authors.packtpub.com
https://packt.link/r/1836206054
https://packt.link/r/1836206054

A

access and permissions
collaborator access control 347
managing 342

OAuth and personal access tokens 348

team management 345
user roles and permissions 342
account types, GitHub 45
enterprise 47,48
individual 45, 46
organization 46
actions 57

advanced CI/CD techniques 215

matrix builds, using for multiple
configurations 215

secrets and environment variables,
managing 215

advanced security 57
Apache License 271
Apache License 2.0 65

application source code
creating 32,33

areas of concentration 357,358
GenAl evolution 359
GHCertified 360
gists 360

Index

Git and GitHub questions 358
GitHub Docs 361
multiple-answer questions 359
nuances, of buttons and icons 359
wikis 360

Ask Me Anything (AMAs) 231

assignee 294

autocompletion 297

Autofix 340

best practices, repository security
activities, auditing 352
activities, monitoring 352
CI/CD pipeline security measures 351
code scanning, with SAST tools 350, 351
incident response and recovery 352

board layout 316

branches 120
benefits 120
branch pointer, updating 127
creating 121
git command, using 121
GitHub website, using 121
IDE, using 122
in Git 119

388

Index

naming convention 124

stashed changes 127-129

switching between 126

uncommitted changes, preserving 127
working directory, updating 126

branch management techniques 136
branch protection rules, on GitHub 137
branch targeting 141
collaborative management 145
default branch, configuring 143, 144
in Git 137

branch targeting 141
benefits 143
configuring 142, 143
fnmatch syntax, using 141, 142

BusyBox case 275

bypass settings 139
benefits 140

C

ChatGPT
Copilot Chat, relationship with 287
CI/CD pipelines
maintaining 215
monitoring 215
updating 215
clean merge
best practices 135
code changes integration 171
conflicts and resolutions, merging 172
final checks before merging 171
post-merge best practices 172
strategies, merging 172
code completions 286

code management
branching and merging 151

documentation and change logs 151
manual code reviews 151
version control systems (VCSs) 151

CodeQL 340

code review, conducting with PR
code changes 162
code review 164-168
collaborator invitation 156-160
GitHub user, creating for review 155, 156
pull request, approving 168, 169
pull request, creating 163
pull request, merging 169, 170
repository, cloning 161
code reviews
constructive feedback, providing 170,171
effective code reviews, conducting 170
GitHub tools, using 171
goals 170
techniques 170
Codespaces 40,57
collaborative management 145
collaborator
access control 347
adding, to repositories 347

permissions, setting for
collaborators 347,348

command-line interface (CLI) 28,280
Command Palette

using 124
commit SHA 25

community engagement
best practices 229-231

Configuration as Code 40

Continuous Deployment (CD) 214

Index

389

Continuous Integration (ClI) 20,214
deploying, to various environments 214
deployment processes, automating 214
implementing 214
settingup 214
testing frameworks, integrating with 214
tests and builds, automating 214

contribution workflow 261
best practices 269
changes, committing 263, 264
commits, best practices 264
contribution, merging once approved 268
feedback and revisions, handling 265-268
fork, cloning 260
fork, updating 262,263
new branch, creating for changes 263
pull request, submitting 264
repository, forking 259
upstream remote, configuring 260

Copilot 57
Copilot agents 293

Copilot code review 294
Copilot coding agent 294

Copilot Chat 286
agent mode 288
ask mode 287
edit mode 288
relationship, with ChatGPT 287
Copilot CLI 288
features 288, 289
using 289,290
Copilot Spaces 292
using 292
copyleft licenses 272
core functionalities, GitHub
Al and automation 41
collaboration 40

productivity 40
scale 41
security 41

Creative Commons Licenses 65

D

default branch
benefits 144
configuring 143, 144
Dependabot 338
alerts and security updates 339
features 339
deployment status checks 139
benefits 139
diff 152
visual representation 152

discussions 57

E

Everything as Code (EaC) 40

F

fast-forward merge 129

first org-scoped repository
creating 55, 56

flag 97

fnmatch syntax
using 141,142

formatting text 76
blockquotes 77
code 78
emphasis 77
headings 76
lists 77

390 Index

G changes, fetching from remote repo 101
changes, merging between branches

Generative Al (GenAl) 40, 41,201, 279 with git merge 106

gists 360 changes, pushing with git push 104, 105

Git changes, staging with git add command 100

existing repository, cloning
with git lcone 102, 103
files, editing with git status command 99

local Git repo, linking to remote repo
with git remote add 105

repository, creating with git init 98
repository settings, configuring

application source code, creating 32, 33
branches 119

branching and merging 23

bug fix, while developing feature 23
challenges 33,34

changes, committing on main branch 23

concept 23-27 with git config 99
configuration files 29 repository, setting up 98
distributed nature 22 status, checking with git status
dominance and popularity 22 command 99
feature branch, creating 24 switching, between branches
feature branch, merging 26 with git checkout 106
installing 30 git commit command
local repository, creating 31, 32 used, for committing changes 100
overview 22 git config
repository, cloning 26, 27 used, for configuring repository settings 99
setting up 29 GitHub 38
user identity, configuring 30, 31 account types 45

gitadd command advantages 38
used, for staging changes 100 core functionalities 40

git branch command plans and offerings 43
used, for creating branches 105 versus Git 39

git checkout command GitHub Actions 40, 202, 210
used, for switching between branches 106 actions, incorporating

into workflow 211,212
Cl/CD with 214
file structure 208, 209
inner workings 204
key components 204
Pipeline as Code 202,203
workflow, defining 210

git clone
existing repository, cloning with 102, 103

Git commands 98
branches, creating with git branch 105
changes, committing with git commit
command 100
changes, downloading from others
with git pull 103, 104 workflow, setting up 210
workflow syntax 208, 209

Index 391

GitHub Actions Marketplace 211,212 using 297
actions, combining 212 using, on github.com 291

GitHub Advanced Security (GHAS) 171,350 working 286

GitHub apps 90 GitHub Desktop 59

GitHub, branch protection rules 137 GitHub Discussions 219
bypass settings 139 categories and custom categories 221
conversation resolution 138 categories, setting up 225
deployment status checks 139 enabling 223,225
linear history 139 examples 228
lock branch 139 participation and engagement,

encouraging 228
polls 222,223
questions and topics, framing 228
thread, creating 225-227
threaded conversations 220
verification 227
working with 223

matching branch 140
merge queue 139

pull request 138
signed commits 138
status checks pass 138

GitHub CLI 59

GitHub collaboration and permissions 91

GitHub Discussions, for project
code reviews 92 » 1or proj

community input, analyzing and
interpreting 233

continuous improvement and iteration 234

feedback, incorporating into project

collaborators and teams 91
Forking and PRs 92
merge conflicts 93

project boards 93 development 233
GitHub community feedback, leveraging 231
reference link 307 feedback, soliciting from
GitHub Copilot 40, 171,280, 294, 295 community 231,232
autocompletion, in IDE 297 GitHub Enterprise 44
available plans 283-285 GitHub Enterprise Cloud 44
best practices and tips 298 GitHub Enterprise Server 45

Copilot Chat 286

Copilot Chat, in IDE 296, 297

Copilot CLI 288

features, within github.com Ul 290, 291
historical context 281

installing, in editor 295, 296

on GitHub mobile 293

right Al model, selecting 282,283
support, for multiple LLMs 281, 282

GitHub Flavored Markdown (GFM) 63, 75
formatting text 76
images, creating 80
links, creating 80
tables, creating 80

GitHub Foundations certification 2
exam-day online requirements 12,13
exam-day test center requirements 12

392

Index

exam registration 11
exam structure 3-9
preparation strategies 10
question types 9
reference 14
target audience 2
time limit 9

GitHub Free 43

GitHub handle 54

GitHub interface 48
exploring 51-53
GitHub issue number 191

GitHub Marketplace 60
features 60

GitHub Mobile 59

GitHub Pages
commit and push changes 251
content creation 248
continuous improvement 248, 252
creating 249
enabling 251
repository, cloning 249
repository, creating 249
SEO and analytics 248
setting up 247
site, viewing 251
utilizing, for personal branding 247
website, creating 250
website, customizing 250

GitHub Pro 43

GitHub projects 314
board columns, creating 315
board columns, customizing 315
custom fields 319
GitHub Projects 2.0 195
GitHub Projects Classic 194
integrating, with issues and milestones 321

items, adding 319
items, archiving 319
items, editing 319
layout 316,317,318
project scope 320
project visibility 320
starting with 314
views 318

GitHub repository
changes, committing 73, 74
cloning 69-72
creating 66-69
sign in, on VS Code 69-72
GitHub security features 333
branch protection rules 336, 337
Dependabot 338
security alerts 339-341
security configurations 337, 338
Two-Factor Authentication (2FA) 334
vulnerability management 339-341
GitHub Sponsors 301
eligibility and requirements 302
success stories 303
using, benefits 302

GitHub Team 44
Git jargon
commands 26
gitinit
used, for creating repository 98

git merge command

used, for merging changes between
branches 106, 107

git mergetool 135
GitOps 40

git pull command

used, for downloading changes
from others 103, 104

Index

393

git push command
used, for pushing changes 104, 105

git remote add command

used, for linking local Git repo
to remote repo 105

git repository 64
issues and solutions 111-113
troubleshooting, best practices 113

git status
used, for checking status 99

Git workflows 110,111
GNU General Public License (GPL) 65,271
GNU Privacy Guard (GPG) 138

H

hash 25
head 120

Identity Provider (IdP) 46
immersive mode 291

inclusive language
using 229
Infrastructure as Code (IaC) 40
Integrated Development
Environment (IDE) 64
issues 56,178
assignees 181
comments 181
creating 183
cross-repository issues 182
labels 180
linking, to pull requests 181,190
managing 184, 185
milestones 181

notifications 182
reactions 181

search and filtering 182
templates 182

title and description 179
types 180

issue templates
creating 187,188
customizing 188,189
real-life use cases 186
saving 189,190
using 186

K

Kubernetes 40

L

labels
creating 191
managing 191, 192
Large File Storage (LFS) 34
large language models (LLMs) 281
Lesser General Public License (LGPL) 272
license compliance 273
legal and ethical considerations 274
maintaining, best practices 275,276
of contributions, with project 273

linear history 139
benefits 139

local repository
creating 31,32

lock branch 139
benefits 139

Lodash 303
long-lived branches 110

394

Index

M

Markdown language 75
advanced features 81
GitHub Flavored Markdown (GFM) 75

Markdown syntax
used, for enriching README files 82-85

matching branch 140
benefits 140

Mercurial 21

merge 134
command 134
conflict resolution 135, 136
rebase merge, performing 134
regular merge, performing 134
squash merge, performing 134
merge commit
fast-forward merge 129
three-way merge 129
merge queue 139
benefits 139
merge types 129
merge commit 129
rebase merge 132
squash merge 130, 131
squash merge, versus rebase merge 133
milestones 192
setting 192, 193
tracking 192,193
MIT License 65, 270
mock exam questions 362-374
Model Context Protocol (MCP) 288

MongoDB Server Side Public
License (SSPL) 275

naming convention 124
advantages 124
best practices 125
examples 125

o

OAuth applications
managing 348

open source 256
contributions 256
GitHub’s Explore feature, using 257
importance 256

project activity and community
engagement, evaluating 257

projects, searching 257
right projects, discovering 257
open source communities
joining 258
project maintainers and contributors,
engaging 258
spaces, for discussion and collaboration
258,259
Open Source Initiative (OSI) 272

open source licenses 270
Apache License 271
applying, to projects 272,273
GNU General Public License (GPL) 271
importance, in projects 270
issues, real-world examples 275
MIT License 270
selecting, for contributions 271,272

open source repos
exploring 49, 50
organization level 337

organization projects 320

Index

395

P

packages 57
permissive licenses 271

Personal Access Tokens (PAT) 348
creating 348, 349
using 349, 350

plans and offerings 43
GitHub Enterprise 44,45
GitHub Free 43
GitHub Pro 43
GitHub Team 44

professional GitHub profile
activity overview 243
basics 240
contact information 242
crafting 240
pinned repositories 242

project board
cards, adding 323,324
cards, managing 323,324
columns, customizing 322,323
creating 321
settingup 321
project board, cards
filtering 326
sorting 326
visible fields, modifying 325
projects 57

projects and contributions
advanced profile setup 245
badges 246
contribution guidelines 244
documentation 244
project selection 244
showcasing 244

stars 247
visuals and media 245

project workflows
automating 327
built-in automations, using 327-329
GitHub Actions, using 330
REST API, using 330

pull request (PR) 56, 87, 138, 149, 150
benefits 138
changes, submitting to fork 264
code review, conducting with 155
contribution, submitting 265
creating 151,152
good practices 153

importance, in collaborative
development 150

submitting 264
lifecycle 151
review process 153, 154

R

React license controversy 275

README files

enriching, with Markdown syntax 82-85
rebase merge 132

versus squash merge 133
remote repo

changes, fetching from 101

changes, pushing 107

linking 107

local repo, linking to 107-110
repository insights 90
repository (repo) 56, 64

creating 64

creating, with git init 98

forking 259

396

Index

initializing, with .gitignore file 65
initializing, with README file 65
internal 42, 56

license, selecting 65

naming conventions 64

setting up 98

private 42,56

public 42,56

repository security
best practices 350

repository settings and management 86

branch management 86, 87
GitHub apps 90
issues, managing 87
pull requests (PRs), managing 87
repository insights 90
security and access control 87
webhooks 90
repository settings and management,
security and access control
access permissions 88
automated security tools 89
security policies 89
repository-specific security settings
managing 338
Requests for Comments (RFCs) 228
roadmap layout 318

S

Secure/Multipurpose Internet Mail
Extensions (S/MIME) 138

signed commits 138
benefits 138

single points of failure (SPOFs) 38

Single Sign-On (SSO) authentication 44

Software-as-a-Service (SaaS) 38

software development lifecycle (SDLC) 41

sponsors
engaging with 307
long-term relationships, building 308
value, providing 308

sponsorship
challenges, handling 308
fund transparency 308
payment methods, setting up 306
profile, promoting 307
setting up, for projects 303, 304
Sponsor button 305

sponsorship profile 303
sponsorship tiers
defining 306
squash merge 130,131
commit message 131
commit message, customizing 131
versus rebase merge 133

Static Analysis Results Interchange
Format (SARIF) 340

Static Application Security
Testing (SAST) 340

status checks 138
benefits 138

Subversion (SVN) 21, 151

T

table layout 317
Team Foundation Version Control (TFVC) 21

teams
creating 346
managing 346
repository access, assigning to 347
using, for access control 346

Index

397

three-way merge 129

Two-Factor Authentication (2FA) 51, 334
GitHub Mobile 335
methods 334, 335
physical security keys 334
setting, on GitHub 336
Short Message Service (SMS) 334
virtual security keys 334

U

user identity
configuring 30, 31

user projects 320

user roles
assigning to 342-345
billing manager 342
member 342
owner 342

user-scoped repository 46
creating 54

\')

version control 20
aspects 20
challenges, without 21
Git’s dominance and popularity 22
using, benefits 20

version control systems (VCSs) 151
examples 21

Visual Studio Code (VS Code) 64

VS Code interface
reference link 73
using 122,123

W

weak copyleft licenses 272
webhooks 90
wiki 360
workflow creation
best practices 213

Y

YubiKeys 334

	Cover
	Title Page
	Copyright Page
	Forewords
	Contributors
	Table of Contents
	Preface
	Sprint 0: Preparing for the Certification
	What is the GitHub Foundations certification?
	Target audience
	Exam structure
	Domain 1: Introduction to Git and GitHub
	Domain 2: Working with GitHub Repositories
	Domain 3: Collaboration Features
	Domain 4: Modern Development
	Domain 5: Project Management
	Domain 6: Privacy, Security, and Administration
	Domain 7: Benefits of the GitHub Community

	Question types
	Time limit

	Preparation strategies
	Study resources
	Hands-on practice
	Mock exams

	Exam registration
	Exam-day test center requirements
	Identity requirements
	Exam accommodations

	Exam-day online requirements
	System requirements
	Workspace requirements
	Identity requirements
	Top tips
	Candidate handbook

	Conclusion
	Useful links

	Part 1: Git and GitHub Essentials
	Chapter 1: Introduction to Version Control with Git
	Getting the most out of this book – get to know your free benefits
	Version control basics
	Benefits of version control
	Challenges without version control
	Examples of version control systems
	Git’s dominance and popularity: why it stands out

	Overview of Git
	Git’s distributed nature
	Branching and merging
	Understanding the Git concept
	Scenario 1: Committing changes on the main branch
	Scenario 2: Creating a feature branch
	Scenario 3: Fixing a bug while developing a feature
	Merging
	Cloning

	Git jargon and commands
	Git configuration files

	Lab 1: Setting up Git
	Installing Git
	Configuring user identity
	Creating a local repository
	Creating your first application source code

	Some common challenges
	Summary
	Test your knowledge
	Useful links

	Chapter 2: Navigating the GitHub Interface
	Technical requirements
	GitHub overview and offerings
	What is GitHub?
	Differences between Git and GitHub
	Beyond just developers

	Core functionalities
	Collaboration
	Productivity
	Security
	Scale
	AI and automation

	Understanding the open source concept
	Available plans and offerings
	GitHub Free
	GitHub Pro
	GitHub Team
	GitHub Enterprise

	GitHub account types
	Individual
	Organization
	Enterprise

	Lab 2.1: Familiarity with the GitHub interface
	Exploring open source repos
	Exploring the interface
	Creating your first user-scoped repository
	Creating your first org-scoped repository

	Introduction to GitHub product features
	Repos
	Issues and pull requests
	Projects
	Discussions
	Actions
	Copilot
	Advanced security
	Packages
	Codespaces

	Other GitHub tools and features
	GitHub Desktop
	GitHub Mobile
	GitHub CLI
	GitHub Marketplace

	Summary
	Test your knowledge
	Useful links

	Chapter 3: Repository Creation and Management
	Technical requirements
	Creating a new repository
	Repository naming conventions
	Initializing with README and .gitignore
	Choosing a license

	Lab 3.1 – Creating a blank repository
	Create a new GitHub repo
	Sign in to GitHub on VS Code and Clone Git Repository
	Commit changes into Git

	The markdown language and the GitHub markdown
	GFM
	Formatting text
	Creating links and images
	Tables

	Advanced markdown features

	Lab 3.2 – Enriching README Files with Markdown Syntax
	Repository settings and management
	Branch management
	Managing issues and pull requests
	Security and access control
	Access permissions
	Security policies
	Automated security tools

	Webhooks and GitHub apps
	Repository insights

	Collaboration and permissions
	Collaborators and teams
	Forking and PRs
	Code reviews
	Managing conflicts
	Project boards

	Summary
	Test your knowledge
	Useful links

	Chapter 4: Basic Git Commands and Workflows
	Technical requirements
	Common Git commands
	Setting up a repository
	Creating a new repository with git init
	Configuring repository settings using git config

	Making changes and committing
	Editing files and checking the status with git status
	Staging changes with git add
	Committing changes with git commit

	Some more common commands
	Fetching changes from a remote repo
	Cloning an existing repository with git clone
	Downloading changes from others with git pull
	Pushing changes with git push
	Linking a local Git repo to a remote repo with git remote add
	Creating new branches with git branch
	Switching between branches with git checkout
	Merging changes between branches with git merge

	Lab 4.1: Linking a remote repo and pushing changes
	Linking a local repo to a remote repo

	Git workflows
	Troubleshooting common issues
	Common issues and solutions
	Merge conflicts
	Detached HEAD state
	Reverting changes
	Resolving issues with remote repositories

	Best practices for troubleshooting

	Summary
	Test your knowledge
	Useful links

	Part 2: Collaborative Development on GitHub
	Chapter 5: Branching and Merging Strategies
	Understanding branches in Git
	Introduction to branches
	Benefits of using branches

	Creating branches
	Using the git command
	Using the GitHub website
	Using the IDE

	Naming conventions and best practices
	Switching between branches
	Updating the working directory
	Preserving uncommitted changes
	Updating the branch pointer
	Stashing changes (optional)

	Merging and conflict resolution
	Types of merges
	Merge commit
	Squash merge
	Rebasing and merging
	Key differences between squash merge and rebase merge

	Performing merges
	Commands for merging branches
	Performing a regular merge
	Performing a squash merge
	Performing a rebase

	Best practices for clean merges
	Conflict resolution

	Branch management techniques
	Managing branches in Git
	Branch protection rules on GitHub
	Require a pull request before merging
	Require status checks to pass
	Require conversation resolution before merging
	Require signed commits
	Require linear history
	Require merge queue
	Require deployments to succeed
	Lock branch
	Do not allow bypassing the above settings
	Restrict who can push to matching branches

	Targeting branches
	Using the fnmatch syntax
	Steps to configure dynamic branch targeting

	Configuring the default branch
	Benefits of setting a default branch

	Collaborative branch management

	Summary
	Test your knowledge
	Useful links

	Chapter 6: Pull Requests and Code Reviews
	Technical requirements
	What is a pull request?
	How was code managed before pull requests existed?
	Version control systems (VCSs):
	Manual code reviews:
	Branching and merging:
	Documentation and change logs:

	The pull request lifecycle
	Creating a pull request
	What is a diff?
	Good practices for writing clear descriptions
	Review process overview

	Lab 6.1: Conducting a code review with a pull request
	Step 1: Create a new GitHub user for review
	Step 2: Invite a collaborator
	Step 3: Clone the repository
	Step 4: Make code changes
	Step 5: Create a pull request
	Step 6: Conduct a code review
	Step 7: Approve the pull request
	Step 8: Merge the pull request

	Conducting effective code reviews
	Code reviews generally serve two main goals:
	Review techniques
	Providing constructive feedback
	Using GitHub tools for reviews

	Integrating changes with confidence
	Final checks before merging:
	Understanding merge conflicts and resolutions
	Merging strategies
	Post-merge best practices
	Some food for thought

	Summary
	Test your knowledge
	Useful links

	Chapter 7: Issues, Projects, Labels, and Milestones
	Technical requirements
	Introduction to issues
	Title and description
	Labels
	Types
	Assignees
	Milestones
	Comments
	Reactions
	Linking issues and pull requests
	Templates
	Notifications
	Search and filtering
	Cross-repository issues

	Lab 7.1: Creating and managing issues
	Using issue templates

	Lab 7.2: Creating an issue template
	Linking issues to pull requests
	What is a GitHub issue number?

	Managing and creating labels
	Setting and tracking milestones
	Projects
	GitHub Projects Classic
	GitHub Projects 2.0
	Differences between GitHub Projects Classic and GitHub Projects 2.0

	Summary
	Test your knowledge
	Useful links

	Chapter 8: GitHub Actions and Automation
	Technical requirements
	Introduction to GitHub Actions
	How Pipeline as Code supports GitHub Actions
	Key components of GitHub Actions
	Events that trigger a workflow
	Jobs, steps, and runners
	GitHub-hosted versus self-hosted runners

	Workflow syntax and file structure

	Lab 8.1: Getting started with GitHub Actions
	Setting up your first workflow
	Defining a simple workflow that runs a basic command, such as printing “Hello, World!”
	Exploring the GitHub Actions Marketplace
	Incorporating these actions into your workflow

	The GitHub Actions Marketplace
	Combining actions

	Best practices in creating workflows
	CI/CD with GitHub Actions
	Setting up Continuous Integration (CI)
	Implementing Continuous Deployment (CD)
	Advanced CI/CD techniques

	Summary
	Test your knowledge
	Useful links

	Chapter 9: Engaging with the Community through GitHub Discussions
	Technical requirements
	Introduction to GitHub Discussions
	Threaded conversations
	Categories and custom categories
	Polls

	Starting a GitHub discussion
	Enabling GitHub Discussions
	Setting up discussion categories
	Creating a new discussion thread
	Verification
	Framing questions and topics
	Encouraging participation and engagement
	Examples of public GitHub discussions

	Best practices for community engagement
	Fostering a welcoming environment
	Active participation and moderation
	Handling conflicts and disagreements
	Recognizing and rewarding contributions

	Leveraging Discussions for project feedback
	Soliciting feedback from the community
	Analyzing and interpreting community input
	Incorporating feedback into project development
	Continuous improvement and iteration

	Summary
	Test your knowledge
	Useful links

	Part 3: Leveraging GitHub for Career Advancement
	Chapter 10: Building and Showcasing Your GitHub Presence
	Technical requirements
	Crafting a professional GitHub profile
	Profile basics
	Contact information
	Pinned repositories
	Activity overview

	Showcasing projects and contributions
	Project selection
	Documentation
	Contribution guidelines
	Visuals and media
	Advanced profile setup
	Badges
	Stars

	Utilizing GitHub Pages for personal branding
	Setting up GitHub Pages
	Content creation
	SEO and analytics
	Continuous improvement

	Lab 10.1: Creating a GitHub page to showcase your profile and skills
	Step 1: Create a new repository
	Step 2: Clone the repository
	Step 3: Create your website
	Step 4: Customize your site (optional)
	Step 5: Commit and push changes
	Step 6: Enable GitHub Pages
	Step 7: View your site
	Step 8: Continuous improvement

	Summary
	Test your knowledge
	Useful links

	Chapter 11: Contributing to Open Source Projects
	Technical requirements
	Exploring the world of open source
	Introduction to open source
	What is open source and why does it matter?
	Why you should contribute

	How to discover the right projects
	Using GitHub’s Explore feature
	Searching for projects by language, topic, or technology
	Evaluating project activity and community engagement

	Joining open source communities
	Engaging with project maintainers and contributors
	Participating in forums, chat rooms, and mailing lists

	Lab 11.1: Forking a repository – a complete contribution workflow
	Setting up your environment
	Forking the repository
	Cloning your fork
	Configuring the upstream remote

	Understanding the contribution flow
	Understanding the workflow
	Keeping your fork updated
	Creating a new branch for your changes
	Making and committing changes

	Submitting a pull request
	Pushing changes to your fork
	Submitting your contribution

	Handling feedback and revisions
	Merging your contribution once approved
	Best practices summary

	Understanding open source licensing
	Introduction to open source licenses
	Importance of licensing in open source projects
	Common open source licenses

	Choosing the right license for your contributions
	Understanding the implications of different licenses
	How to apply a license to your own projects

	License compliance
	Ensuring your contributions comply with the project’s license
	Understanding the legal and ethical considerations

	Case studies and examples
	Real-world examples of licensing issues and resolutions
	Best practices for maintaining compliance

	Summary
	Test your knowledge
	Useful links

	Chapter 12: Enhancing Development with GitHub Copilot
	Technical requirements
	What is GitHub Copilot?
	Historical context
	Support for multiple LLMs
	Choosing the right AI model for your work

	Available Copilot plans
	How does it work?
	Copilot Chat
	What is its relationship with ChatGPT?

	Copilot CLI
	Getting started with the Copilot CLI

	Copilot within the github.com UI
	Getting started with Copilot on github.com

	Copilot Spaces
	Getting started with GitHub Copilot Spaces

	Copilot on GitHub Mobile
	Copilot agents
	Copilot coding agent
	Copilot code review

	Lab 12.1: Getting started with GitHub Copilot
	Installing Copilot in your editor
	Getting started with Copilot Chat in the IDE
	Autocompletion in the IDE

	Using GitHub Copilot effectively
	Best practices and tips
	Summary
	Test your knowledge
	Useful links

	Chapter 13: Funding Your Projects with GitHub Sponsors
	Introduction to GitHub Sponsors
	Benefits of using GitHub Sponsors
	Eligibility and requirements
	Success stories

	Setting up sponsorship for your projects
	Sponsorship buttons
	Defining sponsorship tiers
	Setting up payment methods
	Promoting your sponsorship profile

	Engaging with your sponsors
	Transparency
	Providing value to sponsors
	Building long-term relationships
	Handling sponsorship challenges

	Summary
	Test your knowledge
	Useful links

	Part 4: Advanced GitHub and Exam Preparation
	Chapter 14: Project Management with GitHub Projects
	Technical requirements
	Introduction to GitHub projects
	Getting started with GitHub Projects
	Creating and customizing board columns
	Project layout
	Views
	Custom fields
	Adding and editing items
	Archiving items

	Understanding project visibility (public versus private)
	Project scope (organization versus user)
	Integrating projects with issues and milestones

	Lab 14.1: Setting up project boards
	Creating a project board
	Customizing columns
	Adding and managing cards
	Modifying visible fields
	Filtering and sorting

	Automating project workflows
	Using built-in automations
	Using GitHub Actions
	Using the REST API

	Summary
	Test your knowledge
	Useful links

	Chapter 15: Security Practices and User Management
	Technical requirements
	GitHub security features
	Two-Factor Authentication (2FA)
	Available 2FA methods
	Setting up 2FA on GitHub

	Branch protection rules
	Security configurations
	What is Dependabot?
	Security alerts and vulnerability management

	Managing access and permissions
	User roles and permissions
	Overview of different user roles
	Assigning roles to users

	Team management
	Creating and managing teams
	Assigning repository access to teams

	Collaborator access control
	Adding collaborators to repositories:
	Setting permissions for collaborators:

	OAuth and personal access tokens
	Managing OAuth applications
	Creating and using personal access tokens

	Best practices for repository security
	Code scanning with Static Application Security Testing (SAST) tools
	CI/CD pipeline security measures
	Monitoring and auditing activities
	Incident response and recovery

	Summary
	Test your knowledge
	Useful links

	Chapter 16: Mock Exams and Study Strategies
	Areas of concentration
	What to expect
	Introduction to Git and GitHub questions – big deal
	Nuances of buttons and icons
	The GenAI evolution
	Multiple-answer questions
	GitHub gists and wikis
	The amazing GHCertified!
	GitHub Docs is your friend

	Mock exam questions
	Answers to chapter quizzes
	Additional questions

	Conclusion
	What’s next after certification?

	Chapter 17: Unlock Your Book’s Exclusive Benefits
	How to unlock these benefits in three easy steps

	Packt Page
	Other Books You May Enjoy
	Index

